SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nakayama, H. et al. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol. Gen. Genet. 195, 475–480 (1984).
Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398 (1994).
Bennett, R.J., Sharp, J.A. & Wang, J.C. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273, 9644–9650 (1998).
German, J. & Ellis, N.A. The Genetic Basis of Human Cancer 301–315 (McGraw-Hill, New York, 1998).
Moser, M.J., Shima, J. & Monnat, R.J. Jr., WRN mutations in Werner syndrome. Hum. Mut. 13, 271–279 (1999).
Chen, C., Umezu, K. & Kolodner, R.D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9–22 (1998).
Chen, C. & Kolodner, R.D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999).
Watt, P.M., Hickson, I.D., Borts, R.H. & Louis, E.J. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945 (1996).
Ng, S., Liu, Y., Hasselblatt, K.T., Mok, S.C. & Berkowitz, R.S. A new human topoisomerase III that interacts with SGS1 protein. Nucleic Acids Res. 27, 993–1000 (1999).
Datta, A., Adjiri, A., New, L., Crouse, G.F. & Jinks-Robertson, S. Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 1085–1093 (1996).
Matic, I., Rayssiguier, C. & Radman, M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80, 507–515 (1995).
Yamagata, K. et al. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95, 8733–8738 (1998).
Nicholson, A., Hendrix, M., Jinks-Robertson, S. & Crouse, G.F. Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics 154, 133–146 (2000).
Harmon, F.G. & Kowalczykowski, S.C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 12, 1134–1144 (1998).
Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000).
Frei, C. & Gasser, S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81–96 (2000).
Davey, S. et al. Fission yeast rad12+ regulates cell cycle checkpoint control and is homologous to the Bloom's syndrome disease gene. Mol. Cell. Biol. 18, 2721–2728 (1998).
Yan, H., Chen, C.Y., Kobayashi, R. & Newport, J. Replication focus-forming activity 1 and the Werner syndrome gene product. Nature Genet. 19, 375–378 (1998).
Blander, G. et al. Physical and functional interaction between p53 and the Werner's syndrome protein. J. Biol. Chem. 274, 29463–29469 (1999).
Schulz, V.P. & Zakian, V.A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994).
Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).
Goto, M., Miller, R.W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomarkers Prev. 5, 239–246 (1996).
Shiraishi, Y., Kubonishi, I. & Sandberg, A.A. Establishment of B-lymphoid cell lines retaining cytogenetic characteristics of Bloom syndrome. Cancer Genet. Cytogenet. 9, 129–138 (1983).
Salk, D., Au, K., Hoehn, H. & Martin, G.M. Cytogenetic aspects of Werner syndrome. Adv. Exp. Med. Biol. 190, 541–546 (1985).
Fukuchi, K.-i. et al. Increased frequency of 6-thioguanine-resistant peripheral blood lymphocytes in Werner syndrome patients. Hum. Genet. 84, 249–252 (1990).
Monnat, R.J.J., Hackmann, A.F.M. & Chiaverotti, T.A. Nucleotide sequence analysis of human hypoxanthine phosphoribosyltransferase (HPRT) gene deletions. Genomics 13, 777–787 (1992).
Langlois, R.G., Bigbee, W.L., Jensen, R.H. & German, J. Evidence for increased in vivo mutation and somatic recombination in Bloom's syndrome. Proc. Natl. Acd. Sci. USA 86, 670–674 (1989).
Hanada, K. et al. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 3860–3865 (1997).
Calin, G., Herlea, V., Barbanti-Brodano, G. & Negrini, M. The coding region of the Bloom syndrome BLM gene and of the CBL proto-oncogene is mutated in genetically unstable sporadic gastrointestinal tumors. Cancer Res. 58, 3777–3781 (1998).
