SERS nanoprobes for bio-application

Springer Science and Business Media LLC - Tập 9 - Trang 428-441 - 2015
Han-Wen Cheng1,2, Jin Luo2, Chuan-Jian Zhong2
1School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
2Department of Chemistry, State University of New York at Binghamton, Binghamton, USA

Tóm tắt

The ability to tune the size, shape, composition and surface properties impart nanoparticles with the desired functions for bio-application. This article highlights some of the recent examples in the exploration of metal (e.g., gold and silver) nanoparticles, especially those with magnetic properties and bio-conjugated structures, as theranostic nanoprobes. Such nanoprobes exhibit tunable optical, spectroscopic, magnetic, and electrical properties for signal amplifications. Examples discussed in this article will focus on the nanoproble-enhanced colorimetric detection and surface enhanced Raman scattering (SERS) detection of biomarkers or biomolecules such as proteins and DNAs. The understanding of factors controlling the biomolecular interactions is essential for the design of SERS nanoprobes with theranostic functions.

Tài liệu tham khảo

Wang Y Q, Yan B, Chen L X. SERS tags: Novel optical nanoprobes for bioanalysis. Chemical Reviews, 2013, 113(3): 1391–1428 Kneipp J, Kneipp H, Rice W L, Kneipp K. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical Chemistry, 2005, 77(8): 2381–2385 Driskell J D, Lipert R J, Porter M D. Labeled gold nanoparticles immobilized at smooth metallic substrates: Systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. Journal of Physical Chemistry B, 2006, 110(35): 17444–17451 Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics, 2004, 120(1): 357–366 Barhoumi A, Zhang D, Tam F, Halas N J. Surface-enhanced Raman spectroscopy of DNA. Journal of the American Chemical Society, 2008, 130(16): 5523–5529 Chon H, Lee S, Son S W, Oh C H, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Analytical Chemistry, 2009, 81(8): 3029–3034 Crew E, Yan H, Lin L Q, Skeete Z, Kotlyar T, Tchah N, Lee J, Bellavia M, Goodshaw I, Joseph P, Luo J, Gal S, Zhong C J. DNA assembly and enzymatic cutting in solutions: A gold nanoparticle based SERS detection strategy. Analyst(London), 2013, 138(17): 4941–4949 Lin L Q, Crew E, Yan H, Shan S, Skeete Z, Mott D, Krentsel T, Yin J, Chernova N A, Luo J, Engelhard M H, Wang C, Li Q B, Zhong C J. Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2013, 1(34): 4320–4330 Njoki P N, Lim I I S, Mott D, Park H Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C J. Size correlation of optical and spectroscopic properties for gold nanoparticles. Journal of Physical Chemistry C, 2007, 111(40): 14664–14669 Stoeva S I, Huo F, Lee J S, Mirkin C A. Three-layer composite magnetic nanoparticle probes for DNA. Journal of the American Chemical Society, 2005, 127(44): 15362–15363 Lim I I S, Chandrachud U, Wang L, Gal S, Zhong C J. Assemblydisassembly of DNAs and gold nanoparticles: A strategy of intervention based on oligonucleotides and restriction enzymes. Analytical Chemistry, 2008, 80(15): 6038–6044 Hnilova M, Khatayevich D, Carlson A, Oren E E, Gresswell C, Zheng S, Ohuchi F, Sarikaya M, Tamerler C. Single-step fabrication of patterned gold film array by an engineered multi-functional peptide. Journal of Colloid and Interface Science, 2012, 365(1): 97–102 Bonham A J, Braun G, Pavel I, Moskovits M, Reich N O. Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. Journal of the American Chemical Society, 2007, 129(47): 14572–14573 Sun L, Yu C, Irudayaraj J. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. Analytical Chemistry, 2007, 79(11): 3981–3988 Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior Gap. Nature Nanotechnology, 2011, 6(7): 452–460 Mark P R, Fabris L. Understanding nanoparticle assembly: A simulation approach to SERS-active dimers. Journal of Colloid and Interface Science, 2012, 369(1): 134–143 Lim I I S, Zhong C J. Molecularly-mediated processing and assembly of nanoparticles: Exploring the interparticle interactions and structures. Accounts of Chemical Research, 2009, 42(6): 798–808 Doering W E, Piotti M E, Natan M J, Freeman R G. SERS as a foundation for nanoscale, optically detected biological labels. Advanced Materials, 2007, 19(20): 3100–4108 Lim I I S, Njoki P N, Park H Y, Wang X, Wang L, Mott D, Zhong C J. Gold and magnetic oxide/gold core/shell nanoparticles as biofunctional nanoprobes. Nanotechnology, 2008, 19(30): 305102 Park H Y, Schadt MJ, Wang L, Lim I I S, Njoki P N, Kim S H, Jang M Y, Luo J, Zhong C J. Fabrication of magnetic core@shell Feoxide@ Au nanoparticles for interfacial bio-activity and bioseparation. Langmuir, 2007, 23(17): 9050–9056 Yan H, Lim I I S, Zhang L C, Gao S C, Mott D, Le Y, An D L, Zhong C J. Rigid, conjugated and shaped arylethynes as mediators for the assembly of gold nanoparticles. Journal of Materials Chemistry, 2011, 21(6): 1890–1901 Alvarez-Puebla R A, Liz-Marzán LM. Traps and cages for universal SERS detection. Chemical Society Reviews, 2012, 41(1): 43–51 Li L, Hutter T, Finnemore A S, Huang F M, Baumberg J J, Elliott S R, Steiner U, Mahajan S. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Letters, 2012, 12(8): 4242–3246 Zhou X, Xu WL, Wang Y, Kuang Q, Shi Y F, Zhong L B, Zhang Q Q. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. Journal of Physical Chemistry C, 2010, 114(46): 19607–19613 Jun B H, Noh M S, Kim J Y, Kim G S, Kang H M, Kim M S, Seo Y T, Baek J H, Kim J H, Park J Y, Kim S Y, Kim Y K, Hyeon T W, Cho M H, Jeong D H, Lee Y S. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small, 2010, 6(1): 119–125 Tao C A, An Q, Zhu W, Yang HW, Li WN, Lin C X, Xu D, Li G T. Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles. Chemical Communications, 2011, 47(35): 9867–9869 Wang L, Xu L, Kuang H, Xu C, Kotov N A. Dynamic nanoparticle assemblies. Accounts of Chemical Research, 2012, 45(11): 1916–1926 Jones MR, Osberg K D, Macfarlane R J, Langille MR, Mirkin C A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chemical Reviews, 2011, 111(6): 3736–3827 Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C, Mirkin C A. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294 Lin M, Pei H, Yang F, Fan C, Zuo X. Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. Advanced Materials, 2013, 25(25): 3490–3496 Ye S, Mao Y, Guo Y, Zhang S. Enzyme-based signal amplification of surface-enhanced Raman scattering in cancer-biomarker detection. Trends in Analytical Chemistry, 2014, 5: 43–54 Barrow S J, Funston A M, Wei X, Mulvaney P. DNA-directed selfassembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today, 2013, 8(2): 138–167 Njoki P N, Luo J, Kamundi MM, Lim I I S, Zhong C J. Aggregative growth in size-controlled growth of monodispersed gold nanoparticles. Langmuir, 2010, 26(16): 13622–13629 Shields S P, Richards V N, Buhro W E. Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chemistry of Materials, 2010, 22(10): 3212–3225 Luo J, Maye M M, Han L. Kariuki N N, Jones V W, Lin Y, Engelhard M H, Zhong C J. Spectroscopic characterizations of molecularly-linked gold nanoparticle assemblies upon thermal treatment. Langmuir, 2004, 20(10): 4254–4260 Lim S, Ouyang J, Luo J, Wang L, Zhou S, Zhong C J. Multifunctional fullerene-mediated assembly of gold nanoparticles. Chemistry of Materials, 2005, 17(26): 6528–6531 Lim S, Vaiana C, Zhang Z Y, Zhang Y J, An D L, Zhong C J. Xshaped rigid arylethynes to mediate the assembly of nanoparticles. Journal of the American Chemical Society, 2007, 129(17): 5368–5369 Schadt M J, Cheung W, Luo J, Zhong C J. Molecularly-tuned size selectivity in thermal processing of gold nanoparticles. Chemistry of Materials, 2006, 18(22): 5147–5148 Maye M M, Zheng W X, Leibowitz F L, Ly Nv K, Zhong C J. Heating-induced evolution of thiolate-encapsulated gold nanoparticles: A strategy for size and shape manipulations. Langmuir, 2000, 16(2): 490–497 Maye M M, Zhong C J. Manipulating core-shell reactivities for processing nanoparticle sizes and shapes. Journal of Materials Chemistry, 2000, 10(8): 1895–1901 Mott D, Galkowski J, Wang L, Luo J, Zhong C J. Synthesis of sizecontrolled and shaped copper nanoparticles. Langmuir, 2007, 23(10): 5740–5745 Wang L Y, Luo J, Fan Q, Suzuki M, Suzuki I S, Engelhard MH, Lin Y, Kim N, Wang J Q, Zhong C J. Synthesis and characterization of monolayer-capped PtVFe nanoparticles with controllable sizes and composition. Journal of Physical Chemistry B, 2005, 109: 21593–21601 Wang L Y, Park H Y, Lim I I S, Schadt MJ, Mott D, Luo J, Wang X, Zhong C J. Core@shell nanomaterials: Gold-coated magnetic oxide nanoparticles. Journal of Materials Chemistry, 2008, 18(23): 2629–2635 Wang X, Wang L Y, Lim I I S, Bao K, Mott D, Park H Y, Luo J, Hao S, Zhong C J. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite@Au nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9(5): 3005–3012 Wang L Y, Luo J, Shan S, Crew E, Yin J, Zhong C J. Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Analytical Chemistry, 2011, 83(22): 8688–8695 Wang L Y, Wang X, Luo J, Wanjala B N, Wang C, Chernova N, Engelhard M H, Bae I T, Liu Y, Zhong C J. Core-shell structured ternary magnetic nanocubes. Journal of the American Chemical Society, 2010, 132(50): 17686–17689 Zeng H, Rice P M, Wang S X, Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. Journal of the American Chemical Society, 2004, 126(37): 11458–11459 Wang L Y, Luo J, Maye M M, Fan Q, Rendeng Q, Engelhard M H, Wang C M, Lin Y H, Zhong C J. Iron oxide-gold core-shell nanoparticles and thin film assembly. Journal of Materials Chemistry, 2005, 15(18): 1821–1832 Lim I I S, Ip W, Crew E, Njoki P N, Mott D, Zhong C J, Pan Y, Zhou S. Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir, 2007, 23(2): 826–833 Jin R, Wu G, Li Z, Mirkin C A, Schatz G C. What controls the melting properties of DNA-linked gold nanoparticles assemblies? Journal of the American Chemical Society, 2003, 125(6): 1643–1654 Lytton-Jean A K R, Han M S, Mirkin C A. Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Analytical Chemistry, 2007, 79(15): 6037–6041 Li H, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society, 2004, 126(35): 10958–10961 Wang Z, Kanaras A G, Bates A D, Cosstick R, Brust M. Enzymatic DNA processing on gold nanoparticles. Journal of Materials Chemistry, 2004, 14(4): 578–580 Porter MD, Lipert R J, Siperko LM, Wang G, Narayanana R. SERS as a bioassay platform: Fundamentals, design, and applications. Chemical Society Reviews, 2008, 37(5): 1001–1011 Cheng H W, Huan S Y, Yu R Q. Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores. Analyst (London), 2012, 137(16): 3601–3608 Cheng H W, Huan S Y, Wu H L, Shen G L, Yu R Q. Surfaceenhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates. Analytical Chemistry, 2009, 81(24): 9902–9912 Cheng H W, Luo W Q, Wen G L, Huan S Y, Shen G L, Yu R Q. Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species. Analyst (London), 2010, 135(11): 2993–3001 Cheng HW, Chen Y Y, Lin X X, Huan S Y, Wu H L, Shen G L, Yu R Q. Surface-enhanced Raman spectroscopic detection of bacillus subtilis spores using gold nanoparticle based substrates. Analytica Chimica Acta, 2011, 707(1-2): 155–163 Brown K R, Walter D G, Natan M J. Seeding of colloidal Au nanoparticle solutions. 2._Improved control of particle size and shape. Chemistry of Materials, 2000, 12(2): 306–313 Zhang X Y, Young M A, Lyandres O, Van Duyne R P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2005, 127(12): 4484–4489 Zhang X Y, Zhao J, Whitney A V, Elam J W, Van Duyne R P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. Journal of the American Chemical Society, 2006, 128(31): 10304–10309 Lim I I S, Mott D, Ip W, Njoki P N, Pan Y, Zhou S, Zhong C J. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir, 2008, 24(16): 8857–8863 Lim I I S, Mott D, Engelhard M, Pan Y, Kamodia S, Luo J, Njoki P N, Zhou S, Wang L, Zhong C J. Interparticle chiral recognition of enantiomers: A nanoparticle-based regulation strategy. Analytical Chemistry, 2009, 81(2): 689–698 Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Chemical Communications, 1994, 7: 801–802 Park H, Lee S, Chen L X, Lee E K, Shin S Y, Lee Y H, Son SW, Oh C H, Song J M, Kang S H, Choo J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Physical Chemistry Chemical Physics, 2009, 11(34): 7444–7449 Wang Y Q, Chen L X, Liu P. Biocompatible triplex Ag@SiO2@m-TiO2 core-shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(19): 5935–5943 Zhang W W, Wang Y Q, Sun X Y, Wang W H, Chen L X. Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemophotothermal treatment. Nanoscale, 2014, 6(23): 14514–14522 Lin D H, Qin T Q, Sun X Y, Chen L X. Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Applied Materials & Interfaces, 2014, 6(2): 1320–1329 Niu X J, Chen H Y, Wang Y Q, Wang W H, Sun X Y, Chen L X. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Applied Materials & Interfaces, 2014, 6(7): 5152–5160