SAR Targets Classification Based on Deep Memory Convolution Neural Networks and Transfer Parameters

Ronghua Shang1, Jiaming Wang1, Licheng Jiao1, Rustam Stolkin2, Biao Hou1, Yangyang Li1
1Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, China
2Extreme Robotics Lab, University of Birmingham, Birmingham, U.K.

Tóm tắt

Từ khóa


Tài liệu tham khảo

bottou, 0, Large-scale machine learning with stochastic gradient descent, Proc Int Conf Comput Statist, 177

10.1162/neco.2006.18.7.1527

bengio, 0, Greedy layer-wise training of deep networks, Proc Int Conf Neural Inf Process, 153

10.1109/TKDE.2009.191

kaiser, 0, Learning to remember rare events, Proc Int Conf Learn Represent

10.1109/TGRS.2016.2551720

rumelhart, 1986, Learning representations by back-propagating errors, Nature, 323, 533, 10.1038/323533a0

srivastava, 2014, Dropout: A simple way to prevent neural networks from overfitting, J Mach Learn Res, 15, 1929

10.1109/CVPR.2010.5539963

hinton e, 2012, Improving neural networks by preventing co-adaptation of feature detectors, Comput Sci, 3, 212

10.1109/TGRS.2011.2162526

duchi, 2011, Adaptive subgradient methods for online learning and stochastic optimization, J Mach Learn Res, 12, 2121

10.1109/JSTARS.2017.2671919

10.1049/iet-rsn.2014.0407

10.1109/LGRS.2014.2332076

10.1109/JSTARS.2016.2555938

nilubol, 0, Hidden Markov modeling for SAR automatic target recognition, Proc IEEE Int Conf Acoust Speech Signal Process, 1, 1061

10.1109/TAES.2013.120340

10.1109/7.913670

lecun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539

10.1109/5.726791

10.1109/JSTARS.2016.2517204

novak, 1997, The automatic target-recognition system in SAIP, Lincoln Lab J, 10, 187

10.1109/JSTARS.2017.2670083

10.1109/JSTARS.2013.2262038

10.1109/7.937475

10.1117/1.JRS.10.025006

10.1109/7.892675

10.1109/JSTARS.2015.2436694

10.1109/TAES.2007.357120

10.1109/JSTARS.2017.2743338

10.1109/JSTARS.2017.2754553

10.1109/ACCESS.2016.2611492

10.1145/3065386

simonyan, 0, Very deep convolutional networks for large-scale image recognition, Proc Int Conf Learn Represent

zeiler, 0, Visualizing and understanding convolutional networks, Proc Eur Conf Comp Vis, 818

glorot, 0, Deep sparse rectifier neural networks, Proc Int Conf Artif Intell Statist, 315

10.1109/CVPR.2016.90

kingma, 0, Adam: A method for stochastic optimization, Proc Int Conf Learn Represent

10.1109/CVPR.2015.7298594

ross, 1998, Standard SAR ATR evaluation experiments using the MSTAR public release data set, Proc SPIE, 3370, 566, 10.1117/12.321859

10.1109/TPAMI.2013.50

10.1109/TPAMI.2012.231