Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
S100B như một chỉ dẫn cho tổn thương não và sự mất vững của hàng rào máu não sau khi tập thể dục
Tóm tắt
Mức S100B trong máu được sử dụng như một chỉ số cho tổn thương não và sự gián đoạn của hàng rào máu não (BBB). Tăng mức S100B sau khi tập thể dục đã được ghi nhận, cho thấy rằng hàng rào máu não có thể bị tổn hại trong quá trình tập luyện. Tuy nhiên, sự gia tăng mức S100B có thể bị ảnh hưởng bởi các biến số khác. Mục tiêu chính của bài tổng quan này là tổng hợp các phát hiện về mối quan hệ giữa S100B và tập thể dục nhằm xác định xem protein này có phải là chỉ số hợp lệ cho sự gián đoạn của BBB trong quá trình tập thể dục hay không. Mục tiêu thứ hai là củng cố các yếu tố đã biết gây ra sự gia tăng S100B có thể dẫn đến những diễn giải không chính xác về mức S100B. Các cơ sở dữ liệu PubMed, Web of Science và ScienceDirect đã được tìm kiếm cho các nghiên cứu liên quan đến tháng 1 năm 2013, trong đó mức đo S100B được thực hiện sau một đợt tập thể dục. Các nghiên cứu trên động vật đã được loại trừ. Các biến số quan tâm như loại hoạt động, cường độ tập luyện, thời gian, phương pháp phát hiện, sự hiện diện và mức độ chấn thương đầu đã được xem xét và tổng hợp. Bài tổng quan này bao gồm 23 nghiên cứu; 15 (65%) báo cáo mức S100B tăng lên sau khi tập thể dục, và trong số này, mười báo cáo mức S100B tăng lên không phụ thuộc vào can thiệp, trong khi năm báo cáo mức tăng chỉ trong một số thử nghiệm nhưng không ở các thử nghiệm khác. Tám (35%) nghiên cứu không báo cáo sự gia tăng mức S100B trong tất cả các thử nghiệm. Hầu hết các mức S100B ở mức cơ bản dưới 0.16 μg/L, với sự gia tăng mức S100B dưới 0.07 μg/L sau khi tập thể dục. Các yếu tố có khả năng ảnh hưởng đến mức S100B bao gồm cường độ tập luyện và thời gian, sự hiện diện và mức độ chấn thương đầu. Nhiều yếu tố khác có thể ảnh hưởng đến sự tăng S100B là sự phân hủy cơ, mức độ tập luyện và stress oxy hóa, nhưng các phát hiện hiện tại vẫn còn yếu và không kết luận. Mức S100B tăng cao đã được ghi nhận sau khi tập thể dục và chủ yếu được cho là do sự tăng tính thấm của BBB hoặc chấn thương đầu. Tuy nhiên, ngay cả khi không có chấn thương đầu, có vẻ như BBB có thể bị tổn hại sau khi tập thể dục, với mức độ phụ thuộc vào cường độ tập luyện.
Từ khóa
#S100B #tổn thương não #hàng rào máu não #tập thể dụcTài liệu tham khảo
Gonçalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem. 2008;41:755–63.
Donato R, Sorci G, Riuzzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793:1008–22.
Michetti F, Corvino V, Geloso MC, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120:644–59.
Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.
Cicero TJ, Cowan WM, Moore BW, et al. The cellular localization of the two brain specific proteins, S-100 and 14-3-2. Brain Res. 1970;18:25.
Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovasc Psychiatry Neurol. 2010;2010:1–7.
Cocchia D. Immunochemical and immunocytochemical localization of S-100 antigen in normal human skin. Nature. 1981;294:85–7.
Tubaro C, Arcuri C, Giambanco I, et al. S100B protein in myoblasts modulates myogenic differentiation via NF-κB-dependent inhibition of MyoD expression. J Cell Physiol. 2010;223:270–82.
Pham N, Fazio V, Cucullo L, et al. Extracranial sources of S100B do not affect serum levels. PLoS One. 2010;10(5):e12691.
Kleindienst A, Hesse F, Bullock MR, et al. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res. 2007;161:317–25.
Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci. 2003;21:97–108.
Rothermundt M, Peters M, Prehn JH, et al. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60:614–32.
Schiavi P, Laccarino C, Servadei F. The value of the calcium binding protein S100 in the management of patients with traumatic brain injury. Acta Biomed. 2012;83:5–20.
Dietrich Mde O, Souza DO, Portela LV. Serum S100B protein: what does it mean during exercise? Clin J Sport Med. 2004;14:368.
Schulte S, Schiffer T, Sperlich B, et al. Response to the Letter to the Editor of Sorci et al. “Causes of elevated serum levels of S100B protein in athletes”. Eur J Appl Physiol. 2013;113:821–2.
Donato R, Riuzzi F, Sorci G. Causes of elevated serum levels of S100B protein in athletes. Eur J Appl Physiol. 2013;113:819–20.
Kretsinger RH. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8:119–74.
Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;15(60):540–51.
Selinfreund RH, Barger SW, Welsh MJ, et al. Antisense inhibition of glial S100 beta production results in alterations in cell morphology, cytoskeletal organization, and cell proliferation. J Cell Biol. 1990;111:2021–8.
Scotto C, Deloulme JC, Rousseau D, et al. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Mol Cell Biol. 1998;18:4272–81.
Sorci G, Riuzzi F, Arcuri C, et al. The many faces of S100B protein: when an extracellular factor inactivates its own receptor and activates another one. Ital J Anat Embryol. 2010;115:147–51.
Van Eldik LJ, Christiepope B, Bolin LM, et al. Neurotrophic activity of S-100-beta in cultures of dorsal-root ganglia from embryonic chick and fetal-rat. Brain Res. 1991;1(542):280–5.
Winningham-Major F, Staecker JL, Barger SW, et al. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109:3063–71.
Iwasaki Y, Shiojima T, Kinoshita M. S100 beta prevents the death of motor neurons in newborn rats after sciatic nerve section. J Neurol Sci. 1997;3(151):7–12.
Bhattacharyya A, Oppenheim RW, Prevette D, et al. S100 is present in developing chicken neurons and Schwann cells and promotes motor neuron survival in vivo. J Neurobiol. 1992;23:451–66.
Marshak DR, Pesce SA, Stanley LC, et al. Increased S100β neurotrophic activity in Alzheimer’s disease temporal lobe. Neurobiol Aging. 1992;13:1–7.
Mrak RE, Sheng JG, Griffin WS. Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease. J Neuropathol Exp Neurol. 1996;55:273–9.
Peskind ER, Griffin WS, Akama KT, et al. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int. 2001;39:409–13.
Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA. 1989;86:7611–5.
Esposito G, Imitola J, Lu J, et al. Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet. 2008;1(17):440–57.
Griffin WS, Yeralan O, Sheng JG, et al. Overexpression of the neurotrophic cytokine S100 beta in human temporal lobe epilepsy. J Neurochem. 1995;65:228–33.
Zhang XY, Xiu MH, Song C, et al. Increased serum S100B in never-medicated and medicated schizophrenic patients. J Psychiatr Res. 2010;44:1236–40.
Yuekui L, Barger SW, Liu L, et al. S100b induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2011;74:143–50.
Mariggió MA, Fulle S, Calissano P, et al. The brain protein S-100ab induces apoptosis in PC12 cells. Neuroscience. 1994;60:29–35.
Hu J, Ferreira A, Van Eldik LJ. S100β induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem. 1997;69:2294–301.
Pinto SS, Gottfried C, Mendez A, et al. Immunocontent and secretion of S100B in astrocyte cultures from different brain regions in relation to morphology. FEBS Lett. 2000;15(486):203–7.
Andreazza AC, Cassini C, Rosa AR, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007;41:523–9.
Yardan T, Erenler AK, Baydin A, et al. Usefulness of S100B protein in neurological disorders. J Pak Med Assoc. 2011;61:276–81.
Leite MC, Galland F, de Souza DF, et al. Gap junction inhibitors modulates S100B secretion in astrocyte cultures and acute hippocampal slices. J Neurosci Res. 2009;87:2439–46.
Mello e Souza T, Rohden A, Meinhardt M. S100B infusion into the rat hippocampus facilitates memory for the inhibitory avoidance task but not for the open-field habituation. Physiol Behav. 2000;71:29–33.
Kleindienst A, McGinn MJ, Harvey HB, et al. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotrauma. 2005;22:645–55.
Marchi N, Fazio V, Cucullo L, et al. Serum transthyretin monomer as a possible marker of blood-to-CSF barrier disruption. J Neurosci. 2003;1(23):1949–55.
Grant GA, Janigro D. The blood-brain barrier. In: Winn RH, Youman JR, editors. Youmans neurological surgery, vol. 1. Philadelphia: Saunders; 2004. p. 153–74.
Wong CH, Rooney SJ, Bonser RS. S-100β release in hypothermic circulatory arrest and coronary artery surgery. Ann Thorac Surg. 1999;67:1911–4.
Járányi Z, Székely M, Bobek I, et al. Impairment of blood-brain barrier integrity during carotid surgery as assessed by serum S-100B protein concentrations. Clin Chem Lab Med. 2003;41:1320–2.
Marchi N, Angelov L, Masaryk T, et al. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia. 2007;48:732–42.
Kapural M, Krizanac-Bengez Lj, Barnett G, et al. Serum S-100β as a possible marker of blood–brain barrier disruption. Brain Res. 2002;14(940):102–4.
Kanner AA, Marchi N, Fazio V, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;1(97):2806–13.
Marchi N, Cavaglia M, Fazio V, et al. Peripheral markers of blood–brain barrier damage. Clin Chim Acta. 2004;342:1–12.
Herrmann M, Curio N, Jost S, et al. Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;70:95–100.
Vogelbaum MA, Masaryk T, Mazzone P, et al. S100β as a predictor of brain metastases. Cancer. 2005;15(104):817–24.
Ghanem G, Loir B, Morandini R, et al. On the release and half-life of S100B protein in the peripheral blood of melanoma patients. Int J Cancer. 2001;94:586–90.
Ohrt-Nissen S, Friis-Hansen L, Dahl B, et al. How does extracerebral trauma affect the clinical value of S100B measurements? Emerg Med J. 2011;28:941–4.
Ilg EC, Schäfer BW, Heizmann CW. Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer. 1996;68:325–32.
Brochez L, Naeyaert JM. Serological markers for melanoma. Br J Dermatol. 2000;143:256–68.
Johnsson P, Lundqvist C, Lindgren A, et al. Cerebral complications after cardiac surgery assessed by S-100 and NSE levels in blood. J Cardiothorac Vasc Anesth. 1995;9:694–9.
Ali MS, Harmer M, Vaughan R. Serum S100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth. 2000;85:287–98.
Anderson RE, Hansson LO, Nilsson O, et al. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48:1255–8.
Johnsson P, Bäckström M, Bergh C, et al. Increased S100B in blood after cardiac surgery is a powerful predictor of late mortality. Ann Thorac Surg. 2003;75:162–8.
Fazio V, Bhudia SK, Marchi N, et al. Peripheral detection of S100β during cardiothoracic surgery: what are we really measuring? Ann Thorac Surg. 2004;78:46–52.
Suzuki F, Kato K, Nakajima T. Hormonal regulation of adipose S-100 protein release. J Neurochem. 2006;43:1336–41.
Holtkamp K, Bühren K, Ponath G, et al. Serum levels of S100B are decreased in chronic starvation and normalize with weight gain. J Neural Transm. 2008;115:937–40.
Savola O, Pyhtinen J, Leino TK, et al. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma. 2004;56:1229–34.
Korfias S, Stranjalis G, Psachoulia C, et al. Slight and short-lasting increase of serum S-100B protein in extra-cranial trauma. Brain Inj. 2006;20:867–72.
Hasselblatt M, Mooren FC, von Ahsen N, et al. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology. 2004;11(62):1634–6.
Riuzzi F, Sorci G, Beccafico S, et al. S100B engages RAGE of bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. PLoS One. 2012;7:e28700.
Schulpis KH, Margeli A, Akalestos A, et al. Effects of mode of delivery on maternal-neonatal plasma antioxidant status and on protein S100B serum concentrations. Scand J Clin Lab Invest. 2006;66:733–42.
Bjursten H, Ederoth P, Sigurdsson E, et al. S100B profiles and cognitive function at high altitude. High Alt Med Biol. 2010;11:31–8.
Gazzolo D, Florio P, Zullino E. S100B protein increases in human blood and urine during stressful activity. Clin Chem Lab Med. 2010;48:1363–5.
Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 1997;29:45–57.
Noakes TD. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol. 2012;3(82):1–13.
Meeusen R, Watson P, Hasegawa H, et al. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36:881–909.
Nybo L. CNS fatigue provoked by prolonged exercise in the heat. Front Biosci (Elite Ed). 2010;2:779–92.
Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med. 2005;39:120–4.
Marino FE. The critical limiting temperature and selective brain cooling: neuroprotection during exercise? Int J Hyperth. 2011;27:582–90.
Knaepen K, Goekint M, Heyman EM, et al. Neuroplasticity exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;1(40):765–801.
Bailey DM, Evans KA, McEneny J, et al. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp Physiol. 2011;96:1196–207.
Cheuvront SN, Chinevere TD, Ely BR, et al. Serum S-100beta response to exercise-heat strain before and after acclimation. Med Sci Sports Exerc. 2008;40:1477–82.
Dietrich MO, Tort AB, Schaf DV, et al. Increase in serum S100B protein level after a swimming race. Can J Appl Physiol. 2003;28:710–6.
Graham MR, Myers T, Evans P, et al. Direct hits to the head during amateur boxing is associated with a rise in serum biomarkers for brain injury. Int J Immunopathol Pharmacol. 2011;24:119–25.
Michetti F, Bruschettini M, Frigiola A, et al. Saliva S100B in professional sportsmen: high levels at resting conditions and increased after vigorous physical activity. Clin Biochem. 2011;44:245–7.
Mussack T, Dvorak J, Graf-Baumann T, et al. Serum S-100B protein levels in young amateur soccer players after controlled heading and normal exercise. Eur J Med Res. 2003;22(8):457–64.
Neselius S, Brisby H, Theodorsson A, et al. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One. 2012;7:e33606.
Otto M, Holthusen S, Bahn E, et al. Boxing and running lead to a rise in serum levels of S-100B protein. Int J Sports Med. 2000;21:551–5.
Saenz AJ, Lee-Lewandrowski E, Wood MJ, et al. Measurement of a plasma stroke biomarker panel and cardiac troponin T in marathon runners before and after the 2005 Boston marathon. Am J Clin Pathol. 2006;126:185–9.
Schulpis KH, Moukas M, Parthimos T, et al. The effect of alpha-Tocopherol supplementation on training-induced elevation of S100B protein in sera of basketball players. Clin Biochem. 2007;40:900–6.
Schulte S, Schiffer T, Sperlich B, et al. Serum concentrations of S100B are not affected by cycling to exhaustion with or without vibration. J Hum Kinet. 2011;30:59–63.
Stålnacke BM, Sojka P. Repeatedly heading a soccer ball does not increase serum levels of S-100B, a biochemical marker of brain tissue damage: an experimental study. Biomark Insights. 2008;29(3):87–91.
Stålnacke BM, Tegner Y, Sojka P. Playing ice hockey and basketball increases serum levels of S-100B in elite players: a pilot study. Clin J Sport Med. 2003;13:292–302.
Stålnacke BM, Tegner Y, Sojka P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. Brain Inj. 2004;18:899–909.
Stålnacke BM, Ohlsson A, Tegner Y, et al. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br J Sports Med. 2006;40:313–6.
Stavrinou LC, Kalamatianos T, Stavrinou P, et al. Serum levels of S-100B after recreational scuba diving. Int J Sports Med. 2011;32:912–5.
Straume-Naesheim TM, Andersen TE, Jochum M, et al. Minor head trauma in soccer and serum levels of S100B. Neurosurgery. 2008;62:1297–305.
Tyler CJ, Wild P, Sunderland C. Practical neck cooling and time-trial running performance in a hot environment. Eur J Appl Physiol. 2010;110:1063–74.
Watson P, Shirreffs SM, Maughan RJ. Blood-brain barrier integrity may be threatened by exercise in a warm environment. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1689–94.
Watson P, Black KE, Clark SC, et al. Exercise in the heat: effect of fluid ingestion on blood brain barrier permeability. Med Sci Sports Exerc. 2006;38:2118–24.
Zetterberg H, Jonsson M, Rasulzada A, et al. No neurochemical evidence for brain injury caused by heading in soccer. Br J Sports Med. 2007;41:574–7.
Zetterberg H, Tanriverdi F, Unluhizarci K, et al. Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj. 2009;23:723–6.
Andersson JP, Linér MH, Jönsson H. Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations. J Appl Physiol (1985). 2009;107:809–15.
Wright HE, Selkirk GA, Rhind SG, et al. Peripheral markers of central fatigue in trained and untrained during uncompensable heat stress. Eur J Appl Physiol. 2012;112:1047–57.
Portela LV, Tort AB, Schaf DV, et al. The serum S100B concentration is age dependent. Clin Chem. 2002;48:950–2.
Gazzolo D, Lituania M, Bruschettini M, et al. S100B protein levels in saliva: correlation with gestational age in normal term and preterm newborns. Clin Biochem. 2005;38:229–33.
Gazzolo D, Abella R, Frigiola A, et al. Neuromarkers and unconventional biological fluids. J Matern Fetal Neonatal Med. 2010;23(Suppl 3):66–9.
Persson L, Hårdemark HG, Gustafsson J, et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987;18:911–8.
Woertgen C, Rothoerl RD, Brawanski A. Neuron-specific enolase serum levels after controlled cortical impact injury in the rat. J Neurotrauma. 2001;18:569–73.
Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol (1985). 1988;65:1–6.
Newham DJ, Jones DA, Edwards RH. Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve. 1983;6:380–5.
Pace A, Savarese A, Picardo M, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol. 2003;1(21):927–31.
Khanna S, Roy S, Slivka A, et al. Neuroprotective properties of the natural vitamin E alpha-tocotrienol. Stroke. 2005;36:2258–64.
Bialowas-McGoey LA, Lesicka A, Whitaker-Azmitia PM. Vitamin E increases S100B-mediated microglial activation in an S100B-overexpressing mouse model of pathological aging. Glia. 2008;56:1780–90.