S-Scheme Heterojunction Photocatalyst

Chem - Tập 6 Số 7 - Trang 1543-1559 - 2020
Quanlong Xu1,2, Liuyang Zhang2, Bei Cheng2, Jiajie Fan3, Jiaguo Yu2
1Key laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P.R. China
2State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P.R. China
3School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhao, 2018, Lattice engineering on metal cocatalysts for enhanced photocatalytic reduction of CO2 into CH4, ChemSusChem, 11, 3524, 10.1002/cssc.201801294

Xu, 2015, Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity, Chem. Commun. (Camb.), 51, 7950, 10.1039/C5CC01087J

Stolarczyk, 2018, Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures, ACS Catal., 8, 3602, 10.1021/acscatal.8b00791

Li, 2019, Cocatalysts for selective photoreduction of CO2 into solar fuels, Chem. Rev., 119, 3962, 10.1021/acs.chemrev.8b00400

Zhang, 2018, Robust visible/near-infrared light driven hydrogen generation over Z-scheme conjugated polymer/CdS hybrid, Appl. Catal. B, 224, 871, 10.1016/j.apcatb.2017.11.038

Yue, 2018, Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction, Nano Energy, 47, 463, 10.1016/j.nanoen.2018.03.014

Su, 2018, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal., 8, 2253, 10.1021/acscatal.7b03437

Xu, 2017, Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst, Carbon, 118, 241, 10.1016/j.carbon.2017.03.052

Kuehnel, 2018, Solar hydrogen generation from lignocellulose, Angew. Chem. Int. Ed. Engl., 57, 3290, 10.1002/anie.201710133

Xu, 2019, Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites, Appl. Catal. B, 255, 117770, 10.1016/j.apcatb.2019.117770

Zhu, 2017, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst, Appl. Surf. Sci., 391, 175, 10.1016/j.apsusc.2016.07.104

Xiao, 2018, In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics, Appl. Catal. B, 220, 417, 10.1016/j.apcatb.2017.08.070

Cao, 2015, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater., 27, 2150, 10.1002/adma.201500033

Kudo, 2009, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Meng, 2019, Dual cocatalysts in TiO2 photocatalysis, Adv. Mater., 31, 1807660, 10.1002/adma.201807660

Low, 2017, Heterojunction photocatalysts, Adv. Mater., 29, 1601694, 10.1002/adma.201601694

Nosaka, 2017, Generation and detection of reactive oxygen species in photocatalysis, Chem. Rev., 117, 11302, 10.1021/acs.chemrev.7b00161

Deng, 2015, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1, 167, 10.1007/s40726-015-0015-z

Huang, 1993, Advanced chemical oxidation: its present role and potential future in hazardous waste treatment, Waste Manag., 13, 361, 10.1016/0956-053X(93)90070-D

Xu, 2018, Direct Z-scheme photocatalysts: principles, synthesis, and applications, Mater. Today, 21, 1042, 10.1016/j.mattod.2018.04.008

Serpone, 1984, Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; Improved efficiency through inter-particle electron transfer, J. Chem. Soc. Chem. Commun., 1984, 342, 10.1039/C39840000342

Serpone, 1995, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A, 85, 247, 10.1016/1010-6030(94)03906-B

Bedja, 1995, Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites, J. Phys. Chem., 99, 9182, 10.1021/j100022a035

Teranishi, 2013, Charge separation in type-II semiconductor heterodimers, J. Phys. Chem. Lett., 4, 2867, 10.1021/jz4013504

Bai, 2015, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations, Chem. Soc. Rev., 44, 2893, 10.1039/C5CS00064E

Low, 2017, A review of direct Z-scheme photocatalysts, Small Methods, 1, 1700080, 10.1002/smtd.201700080

Bard, 1979, Photoelectrochemistry and heterogenous photo-catalysis at semiconductors, J. Photochem., 10, 59, 10.1016/0047-2670(79)80037-4

Zhou, 2014, All-solid-state Z-scheme photocatalytic systems, Adv. Mater., 26, 4920, 10.1002/adma.201400288

Li, 2016, Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges, Adv. Sci., 3, 1500389, 10.1002/advs.201500389

Maeda, 2013, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal., 3, 1486, 10.1021/cs4002089

Krishnan, 1985, Homogeneous catalysis of the photoreduction of water. 6. Mediation by polypyridine complexes of ruthenium(II) and cobalt(II) in alkaline media, J. Am. Chem. Soc., 107, 2005, 10.1021/ja00293a035

Tada, 2006, All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system, Nat. Mater., 5, 782, 10.1038/nmat1734

Di, 2019, Review on metal sulphide-based Z-scheme photocatalysts, ChemCatChem, 11, 1394, 10.1002/cctc.201802024

Yu, 2017, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production, Appl. Catal. B, 219, 693, 10.1016/j.apcatb.2017.08.018

Jin, 2015, A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity, Small, 11, 5262, 10.1002/smll.201500926

Qi, 2017, A review on TiO2-based Z-scheme photocatalysts, Chin. J. Catal., 38, 1936, 10.1016/S1872-2067(17)62962-0

Low, 2019, In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst, Adv. Mater., 31, 1802981, 10.1002/adma.201802981

Wang, 2019, Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity, Appl. Catal. B, 243, 19, 10.1016/j.apcatb.2018.10.019

Yu, 2018, Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution, J. Mater. Chem. A, 6, 15668, 10.1039/C8TA02922A

Grätzel, 2001, Photoelectrochemical cells, Nature, 414, 338, 10.1038/35104607

Wang, 2009, Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures, Chem. Commun., 23, 3452, 10.1039/b904668b

Yu, 2013, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air, Phys. Chem. Chem. Phys., 15, 16883, 10.1039/c3cp53131g

Liu, 2016, A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure, Phys. Chem. Chem. Phys., 18, 31175, 10.1039/C6CP06147H

Fu, 2019, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B, 243, 556, 10.1016/j.apcatb.2018.11.011

Mei, 2019, Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity, Appl. Surf. Sci., 488, 151, 10.1016/j.apsusc.2019.05.257

Jia, 2019, One pot milling route to fabricate step-scheme AgI/I-BiOAc photocatalyst: energy band structure optimized by the formation of solid solution, Appl. Surf. Sci., 489, 409, 10.1016/j.apsusc.2019.05.361

Wang, 2020, Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions, Chem. Eng. J., 379, 122264, 10.1016/j.cej.2019.122264

Xu, 2019, Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation, Appl. Surf. Sci., 495, 143555, 10.1016/j.apsusc.2019.143555

He, 2020, Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification, Chin. J. Catal., 41, 9, 10.1016/S1872-2067(19)63382-6

Mu, 2020, In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel Step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting, Appl. Surf. Sci., 501, 143974, 10.1016/j.apsusc.2019.143974

Wang, 2020, Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation, Ceram. Int., 46, 23, 10.1016/j.ceramint.2019.08.226

Hu, 2019, One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance, Mater. Lett., 257, 126740, 10.1016/j.matlet.2019.126740

Wang, 2020, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity, J. Mater. Sci. Technol.

Wang, 2015, Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms, J. Environ. Sci., 34, 232, 10.1016/j.jes.2015.05.003

Xia, 2020, Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria, Angew. Chem. Int. Ed. Engl., 59, 5218, 10.1002/anie.201916012

Xia, 2020, Reaction: rational design of highly active photocatalysts for CO2 conversion, Chem, 6, 1039, 10.1016/j.chempr.2020.02.015

Ge, 2019, S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst, ChemCatChem, 11, 6301, 10.1002/cctc.201901486

He, 2020, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity, Appl. Catal. B, 272, 119006, 10.1016/j.apcatb.2020.119006