S-GCN-GRU-NN: A novel hybrid model by combining a Spatiotemporal Graph Convolutional Network and a Gated Recurrent Units Neural Network for short-term traffic speed forecasting

Manrui Jiang1, Wei Chen1, Xiang Li2
1School of Management and Engineering, Capital University of Economics and Business, Beijing, China
2School of Economics and Management, Beijing University of Chemical Technology, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Asif MT, Dauwels J, Goh CY, Oran A, Fathi E, Xu M, Dhanya MM, Mitrovic N, Jaillet P (2014) Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction. IEEE Trans Intell Transp Syst 15(2):794–804

Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709

Cai P, Wang Y, Lu G, Chen P, Ding C, Sun J (2016) A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transp Res Part C: Emerg Technol 62:21–34

Chen C, Liu X, Qiu T, Sangaiah AK (2017) A short-term traffic prediction model in the vehicular cyber-physical systems. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.06.006

Cheng S, Lu F, Peng P, Wu S (2019) Multi-task and multi-view learning based on particle swarm optimization for short-term traffic forecasting. Knowl-Based Syst 180:116–132

Cui Z, Ke R, Wang Y (2018) Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction. CoRR, arXiv:1801.02143

Dornaika F, Bekhouche SE, Arganda-Carreras I (2020) Robust regression with deep CNNs for facial age estimation: An empirical study. Expert Syst Appl 141. https://doi.org/10.1016/j.eswa.2019.112942

Duan P, Mao G, Liang W, Zhang D (2019) A Unified Spatio-Temporal Model for Short-Term Traffic Flow Prediction. IEEE Trans Intell Transp Syst 20(9):3212–3223

Essien A, Petrounias I, Sampaio P, Sampaio S (2019) Improving Urban Traffic Speed Prediction Using Data Source Fusion and Deep Learning. In: 2019 IEEE international conference on big data and smart computing (BigComp), IEEE; Korean Inst Informat Scientists & Engineers; INTAGE Inc. IEEE, pp 331–338

Ge L, Li H, Liu J, Zhou A (2019) Temporal Graph Convolutional Networks for Traffic Speed Prediction Considering External Factors. In: 2019 20th International Conference on Mobile Data Management (MDM 2019), IEEE International Conference on Mobile Data Management. IEEE Computer SOC, pp 234–242

Gu Y, Lu W, Qin L, Li M, Shao Z (2019) Short-term prediction of lane-level traffic speeds: A fusion deep learning model. Transp Res Part C: Emerg Technol 106:1–16

He Z, Chow C-Y, Zhang J-D (2019) STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction. IEEE Access 7:4795–4806

Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, Rueckert D (2018) Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169:431–442

Li Y, Yu R, Shahabi C, Liu Y (2017) Graph Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. CoRR, arXiv:1707.01926

Li Y, He Z, Ye X, He Z, Han K (2019) Spatial temporal graph convolutional networks for skeleton-based dynamic hand gesture recognition. EURASIP J Image Video Process 2019:78. https://doi.org/10.1186/s13640-019-0476-x

Li Y, Chen M, Lu X, Zhao W (2018) Research on optimized GA-SVM vehicle speed prediction model based on driver-vehicle-road-traffic system. Sci China Technol Sci 61(5):782–790

Lin L, He Z, Peeta S (2018) Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transp Res Part C: Emerg Technol 97:258–276

Lu Q, Chen C, Xie W, Luo Y (2019) PointNGCNN: Deep convolutional networks on 3D point clouds with neighborhood graph filters. Computers & Graphics. https://doi.org/10.1016/j.cag.2019.11.005

Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y (2017) Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction. Sensors 17 (4):818

Ma X, Tao Z, Wang Y, Yu H, Wang Y (2015) Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp Res Part C: Emerg Technol 54:187–197

Min W, Wynter L (2011) Real-time road traffic prediction with spatio-temporal correlations. Transp Res Part C: Emerg Technol 19(4):606–616

Pan X, Shen H-B (2019) Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks. iScience 20:265–277

Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D (2018) Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Med Image Anal 48:117–130

Polson NG, Sokolov VO (2017) Deep learning for short-term traffic flow prediction. Transp Res Part C: Emerg Technol 79:1–17

Qi Y, Ishak S (2014) A Hidden Markov Model for short term prediction of traffic conditions on freeways. Transp Res Part C: Emerg Technol 43:95–111

Qi Y, Li Q, Karimian H, Liu D (2019) A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Sci Total Environ 664:1–10

Rapant L, Slaninová K, Martinovič J, Martinovič T (2016) Traffic Speed Prediction Using Hidden Markov Models for Czech Republic Highways. In: Jezic G, Chen-Burger Y-HJ, Howlett RJ, Jain LC (eds) Agent and Multi-Agent Systems: Technology and Applications. Springer International Publishing, Cham, pp 187–196

Rasyidi M, Kim J, Ryu K (2014) Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm. J Intell Inf Syst 20(1):121–131

Raza A, Zhong M (2017) Hybrid lane-based short-term urban traffic speed forecasting: A genetic approach. In: 2017 4th International Conference on Transportation Information and Safety (ICTIS), pp 271–279

Schwarzer M, Rogan B, Ruan Y, Song Z, Lee DY, Percus AG, Chau VT, Moore BA, Rougier E, Viswanathan HS, Srinivasan G (2019) Learning to fail: Predicting fracture evolution in brittle material models using recurrent graph convolutional neural networks. Comput Mater Sci 162:322–332

Sezer OB, Ozbayoglu AM (2018) Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Appl Soft Comput 70:525–538

Shi Y, Li Q, Zhu XX (2020) Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS J Photogramm Remote Sens 159:184–197

Shrivastava K, Kumar S, Jain DK (2019) An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network. Multimed Tools Appl 78(20):29607–29639

Tao Y, Wang X, Zhang Y (2019) A Multitask Learning Neural Network for Short-Term Traffic Speed Prediction and Confidence Estimation. In: Tetko IV, Kůrková V, Karpov P, Theis F (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. Springer International Publishing, Cham, pp 434–449

Vapnik V (1998) Statistical learning theory. Wiley

Wang H, Liu L, Dong S, Qian Z, Wei H (2016) A novel work zone short-term vehicle-type specific traffic speed prediction model through the hybrid EMD-ARIMA framework. Transp B-Transport Dyn 4(3):159–186

Wang J, Chen R, He Z (2019) Traffic speed prediction for urban transportation network: A path based deep learning approach. Transp Res Part C: Emerg Technol 100:372–385

Wang X, Ye Y, Gupta A (2018) Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6857–6866

Williams BM, Hoel LA (2003) Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. J Transp Eng 129(6):664–672

Xie Y, Zhang Y, Ye Z (2007) Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition. Comput-Aided Civil Infrastruct Eng 22(5):326–334

Yan X, Ai T, Yang M, Yin H (2019) A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS J Photogramm Remote Sens 150:259– 273

Yang F, Yin Z, Liu H, Ran B (2004) Online Recursive Algorithm for Short-Term Traffic Prediction. Transp Res Record J Transp Res Board 1879:1–8

Yao B, Chen C, Cao Q, Jin L, Zhang M, Zhu H, Yu B (2017) Short-Term Traffic Speed Prediction for an Urban Corridor. Comput-Aided Civil Infrastruct Eng 32(2):154–169

Yu B, Yin H, Zhu Z (2017) Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting. CoRR, arXiv:1709.04875

Yu D, Liu C, Wu Y, Liao S, Anwar T, Li W, Zhou C (2019) Forecasting short-term traffic speed based on multiple attributes of adjacent roads. Knowl-Based Syst 163:472–484

Yu J JQ, Gu J (2019) Real-Time Traffic Speed Estimation With Graph Convolutional Generative Autoencoder. IEEE Trans Intell Transp Syst 20(10):3940–3951

Zhang H (1999) Link-Journey-Speed Model for Arterial Traffic. Transp Res Rec J Transp Res Board 1676:109–115

Zhang K, Zheng L, Liu Z, Jia N (2019) A deep learning based multitask model for network-wide traffic speed prediction. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.10.097

Zhang Q, Chang J, Meng G, Xu S, Xiang S, Pan C (2019) Learning graph structure via graph convolutional networks. Pattern Recogn 95:308–318

Zhang Q, Jin Q, Chang J, Xiang S, Pan C (2018) Kernel-Weighted Graph Convolutional Network: A Deep Learning Approach for Traffic Forecasting. In: 2018 24th International Conference on Pattern Recognition (ICPR), International Conference on Pattern Recognition, pp 1018–1023

Zhao D, Wang J, Lin H, Yang Z, Zhang Y (2019) Extracting drug-drug interactions with hybrid bidirectional gated recurrent unit and graph convolutional network. J Biomed Inform 99:103295

Zheng Y, Hu J, Chawla S (2012) Inferring the Root Cause in Road Traffic Anomalies. In: Proceedings of the 2012 IEEE International Conference on Data Mining. IEEE, pp 141–150

Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Sun M (2018) Graph Neural Networks: A Review of Methods and Applications. CoRR, arXiv:1812.08434