Ruthenium Oxide/Reduced Graphene Oxide Nanoribbon Composite and Its Excellent Rate Capability in Supercapacitor Application

Chinese Journal of Chemistry - Tập 34 Số 1 - Trang 114-122 - 2016
Ruijing Wang1, Pengfei Jia1, Yuying Yang1, Ning An1, Xiaogang Zhang1, Hongying Wu1, Zhongai Hu1
1Key Laboratory of Eco-Environment-Relatged Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China

Tóm tắt

Abstract

Chemical oxidation is used to cut and unzip multi‐walled carbon nanotubes in the transverse direction and the axial direction to form graphene oxide nanoribbon (GONR). Ruthenium oxide/reduced graphene oxide nanoribbon composite (RuO2/rGONR) with a 72.5 wt% RuO2 loading is synthesized through an aqueous‐phase reaction, in which GONR is served as starting material, followed by mild thermal treatment in ambient air. The resulting RuO2/rGONR composite achieves specific capacitance up to 677 F·g−1 at the current density of 1 A·g−1 in three‐electrode system using 1 mol·L−1 H2SO4 as electrolyte. The resultant electrode exhibits an excellent rate capability (91.8% retention rate at 20 A·g−1). Especially, the symmetric supercapacitor assembled on the basis of RuO2/rGONR electrode delivers high energy density (16.2 Wh·kg−1) even at the power density of 9885 W·kg−1, which is very essential for supercapacitors.

Từ khóa


Tài liệu tham khảo

10.1016/j.mattod.2014.02.014

Conway B. E., 1997, Electrochemical Supercapacitor: Scientific Fundamentals and Technological Applications

10.1126/science.1132195

10.1002/adma.201201920

10.1002/cjoc.200690284

10.1039/C0NR00470G

10.1021/nn505658u

10.1088/0957-4484/17/21/005

10.1016/j.carbon.2014.03.058

10.1021/nl8038579

10.1002/smll.201102635

10.1021/cr050569o

10.1126/science.1222453

10.1021/cs200652y

10.1002/cjoc.201300324

10.1039/C4RA16092D

10.1002/cjoc.201400740

10.1016/j.carbon.2012.08.009

10.1126/science.1200770

Dmitry V. K., 2009, Nature, 16, 872

10.1016/j.carbon.2014.09.073

10.1021/am302000z

10.1039/c3ta12037f

10.1016/j.electacta.2013.02.034

10.1088/0957-4484/26/27/274004

10.1021/jp403402k

Chang K. H., 2007, J. Electrochem. Soc., 19, 2112

10.1016/j.nanoen.2013.05.012

10.1038/srep04452

10.1002/adma.201302987

Vasilios G., 2015, Chem. Rev., 11, 4744

10.1039/C4TB01702A

10.1021/jp505744p

10.1016/S0378-7753(01)00903-X

10.1149/1.2338633

10.1002/adma.200400839

10.1016/j.jallcom.2012.07.005

10.1016/j.jpowsour.2014.06.035

10.1016/j.electacta.2014.09.039

10.1149/1.1639020

10.1039/C5NJ00062A

10.1021/jp902871b

10.1039/C5TA03742E

10.1016/j.matlet.2006.01.015

10.1021/am502173x

10.1021/jp9116563

10.1039/c2ra21715e

10.1007/s10008-012-1678-7

10.1021/acsnano.5b01790

10.1039/C4TA04277H

10.1149/2.023204esl