Rudiments of rough sets
Tóm tắt
Từ khóa
Tài liệu tham khảo
2002, vol. 2475
A. An, Y. Huang, X. Huang, N. Cercone, Feature selection with rough sets for web page classification. In: Peters et al. [228], pp. 1–13.
P. Apostoli, A. Kanda, Parts of the continuum: Towards a modern ontology of sciences, Technical Reports in Philosophical Logic, vol. 96 (1). The University of Toronto, Department of Philosophy, Toronto, Canada, 1999, Revised March, 1999.
1989
Balbiani, 2002, A modal logic for indiscernibility and complementarity in information systems, Fundamenta Informaticae, 50, 243
Banerjee, 2006, Logic for rough truth, Fundamenta Informaticae, 71, 139
M. Banerjee, M.K. Chakraborty, Rough set algebras. In: Pal et al. [194], pp. 157–184.
Banerjee, 1996, Roughness of a fuzzy set, Information Sciences, 93, 235, 10.1016/0020-0255(96)00081-3
J. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problems. In: Polkowski et al. [241], pp. 49–88.
J. Bazan, A. Osmólski, A. Skowron, D. Śle¸zak, M. Szczuka, J. Wróblewski, Rough set approach to the survival analysis. In: Alpigini et al. [1], pp. 522–529.
J. Bazan, A. Skowron, On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: Pal et al. [189], pp. 720–725.
J.G. Bazan, A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski and Skowron [244], pp. 321–365.
J.G. Bazan, H.S. Nguyen, A. Skowron, M. Szczuka, A view on rough set concept approximation. In: Wang et al. [350], pp. 181–188.
J.G. Bazan, J.F. Peters, A. Skowron, Behavioral pattern identification through rough set modelling. In: Śle¸zak et al. [301], pp. 688–697.
Black, 1937, Vagueness: an exercise in logical analysis, Philosophy of Science, 4, 427, 10.1086/286476
Brown, 1990
E. Bryniarski, U. Wybraniec-Skardowska, Generalized rough sets in contextual spaces. In: Rough Sets and Data Mining – Analysis of Imperfect Data. pp. 339–354.
Cantor, 1874, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Crelle’s Journal für Mathematik, 77, 258
Cantor, 1883
1999
G. Cattaneo, Abstract approximation spaces for rough theories. In: Polkowski and Skowron [244], pp. 59–98.
Cattaneo, 2004, Algebraic structures related to many valued logical systems. Part I: Heyting–Wajsberg algebras, Fundamenta Informaticae, 63, 331
Cattaneo, 2004, Algebraic structures related to many valued logical systems. Part II: Equivalence among some widespread structures, Fundamenta Informaticae, 63, 357
2001, Computational Intelligence: An International Journal, vol. 17
B.S. Chlebus, S.H. Nguyen, On finding optimal discretizations for two attributes. In: Polkowski and Skowron [243], pp. 537–544.
Chmielewski, 1996, Global discretization of continuous attributes as preprocessing for machine learning, International Journal of Approximate Reasoning, 15, 319, 10.1016/S0888-613X(96)00074-6
Cios, 1998
Comer, 1991, An algebraic approach to the approximation of information, Fundamenta Informaticae, 14, 495, 10.3233/FI-1991-14406
Czyżewski, 2003, Automatic identification of sound source position employing neural networks and rough sets, Pattern Recognition Letters, 24, 921, 10.1016/S0167-8655(02)00204-0
Czyżewski, 2001, Neuro-rough control of masking thresholds for audio signal enhancement, Neurocomputing, 36, 5, 10.1016/S0925-2312(00)00333-7
A. Czyżewski, M. Szczerba, B. Kostek, Musical phrase representation and recognition by means of neural networks and rough sets. In: Peters and Skowron [225], pp. 254–278.
2002
Demri, 2002, Automata-theoretic decision procedures for information logics, Fundamenta Informaticae, 53, 1
Demri, 2000, Computational complexity of multimodal logics based on rough sets, Fundamenta Informaticae, 44, 373
J. Deogun, V.V. Raghavan, A. Sarkar, H. Sever, Data mining: trends in research and development. In: Rough Sets and Data Mining – Analysis of Imperfect Data, pp. 9–46.
P. Doherty, W. Łukaszewicz, A. Skowron, A. Szałas, Approximation transducers and trees: a technique for combining rough and crisp knowledge. In: Knowledge Engineering: A Rough Set Approach [38], pp. 189–218.
Doherty, 2006, vol. 202
Dubois, 1987, Rough fuzzy sets and fuzzy rough sets, Fuzzy Sets and Systems, 23, 3, 10.1016/0165-0114(87)90096-0
Dubois, 1990, Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 191, 10.1080/03081079008935107
D. Dubois, H. Prade, Foreword. In: Rough Sets: Theoretical Aspects of Reasoning about Data [206].
V. Dubois, M. Quafafou, Concept learning with approximation: rough version spaces. In: Alpigini et al. [1], pp. 239–246.
Duda, 2002
2005
Düntsch, 1997, A logic for rough sets, Theoretical Computer Science, 179, 427, 10.1016/S0304-3975(96)00334-9
Düntsch, 1998, Uncertainty measures of rough set prediction, Artificial Intelligence, 106, 77, 10.1016/S0004-3702(98)00091-5
Düntsch, 2000, Rough set data analysis, vol. 43, 281
Düntsch, 2000
Düntsch, 2001, Algebras of approximating regions, Fundamenta Informaticae, 46, 71
Fan, 2002, On modal and fuzzy decision logics based on rough set theory, Fundamenta Informaticae, 52, 323
K. Farion, W. Michalowski, R. Słowiński, S. Wilk, S. Rubin, Rough set methodology in clinical practice: Controlled hospital trial of the MET system. In: Tsumoto et al. [337], pp. 805–814.
Filip, 2000, Nominal and verbal semantic structure: analogies and interactions, Language Sciences, 23, 453, 10.1016/S0388-0001(00)00033-4
Forrest, 2002, Sets as mereological tropes, Metaphysical, 3, 5
Frege, 1903, 2
Friedman, 2001
1994, vol. 3
Garcia-Molina, 2002
Gediga, 2001, Rough approximation quality revisited, Artificial Intelligence, 132, 219, 10.1016/S0004-3702(01)00147-3
Gediga, 2003, Maximum consistency of incomplete data via non-invasive imputation, Artificial Intelligence Review, 19, 93, 10.1023/A:1022188514489
G. Gediga, I. Düntsch, On model evaluation, indices of importance, and interaction values in rough set analysis. In: Pal et al. [194], pp. 251–276.
Gomolińska, 2002, A comparative study of some generalized rough approximations, Fundamenta Informaticae, 51, 103
Gomolińska, 2004, A graded meaning of formulas in approximation spaces, Fundamenta Informaticae, 60, 159
A. Gomolińska, Rough validity, confidence, and coverage of rules in approximation spaces. In: Peters and Skowron [226], pp. 57–81.
Góra, 2002, RIONA: A new classification system combining rule induction and instance-based learning, Fundamenta Informaticae, 51, 369
S. Greco, M. Inuiguchi, R. Słowiński, A new proposal for fuzzy rough approximations and gradual decision rule representation. In: Peters et al. [228], pp. 319–342.
Greco, 2006, Fuzzy rough sets and multiple-premise gradual decision rules, International Journal of Approximate Reasoning, 41, 179, 10.1016/j.ijar.2005.06.014
Greco, 2000, Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems, 295
Greco, 2001, Rough set theory for multicriteria decision analysis, European Journal of Operational Research, 129, 1, 10.1016/S0377-2217(00)00167-3
Greco, 2002, Data mining tasks and methods: classification: multicriteria classification, 318
S. Greco, B. Matarazzo, R. Słowiński, Dominance-based rough set approach to knowledge discovery (I) – general perspective, (ii) – extensions and applications. In: Zhong and Liu [374], pp. 513–552, 553–612.
Greco, 2004, Can Bayesian confirmation measures be useful for rough set decision rules?, Engineering Applications of Artificial Intelligence, 17, 345, 10.1016/j.engappai.2004.04.008
S. Greco, R. Słowiński, J. Stefanowski, M. Zurawski, Incremental versus non-incremental rule induction for multicriteria classification. In: Peters et al. [228], pp. 54–62.
Grzymała-Busse, 1990
J.W. Grzymała-Busse, LERS – A system for learning from examples based on rough sets. In: Słowiński [305], pp. 3–18.
Grzymała-Busse, 1993, Selected algorithms of machine learning from examples, Fundamenta Informaticae, 18, 193, 10.3233/FI-1993-182-408
Grzymała-Busse, 1997, Classification of unseen examples under uncertainty, Fundamenta Informaticae, 30, 255, 10.3233/FI-1997-303403
Grzymała-Busse, 1997, A new version of the rule induction system LERS, Fundamenta Informaticae, 31, 27, 10.3233/FI-1997-3113
J.W. Grzymała-Busse, Three strategies to rule induction from data with numerical attributes. In: Peters et al. [228], pp. 54–62.
J.W. Grzymała-Busse, W.J. Grzymała-Busse, Handling missing attribute values. In: Maimon and Rokach [138], pp. 37–57.
Grzymała-Busse, 2001, Coping with missing attribute values based on closest fit in preterm birth data: a rough set approach, Computational Intelligence: An International Journal, 17, 425, 10.1111/0824-7935.00155
J.W. Grzymaa-Busse, Z.S. Hippe, Data mining methods supporting diagnosis of melanoma, In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), 23–24 June 2005, Dublin, Ireland, IEEE Computer Society, 2005, pp. 371–373.
Grzymała-Busse, 2000, Data mining and rough set theory, Communications of the ACM, 43, 108, 10.1145/332051.332082
Han, 2004, Reduct and attribute order, Journal of Computer Science and Technology, 19, 429, 10.1007/BF02944745
S. Hirano, M. Inuiguchi, S. Tsumoto (Eds.). Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC’2001), Matsue, Shimane, Japan, May 20–22, 2001, Bulletin of the International Rough Set Society, vol. 5(1–2). International Rough Set Society, Matsue, Shimane, 2001.
Hirano, 2005, Rough representation of a region of interest in medical images, International Journal of Approximate Reasoning, 40, 23, 10.1016/j.ijar.2004.11.008
Hu, 1995, Learning in relational databases: a rough set approach, Computational Intelligence: An International Journal, 11, 323, 10.1111/j.1467-8640.1995.tb00035.x
Hu, 1999, Data mining via discretization, generalization and rough set feature selection, Knowledge and Information Systems: An International Journal, 1, 33, 10.1007/BF03325090
Hu, 2001, Discovering maximal generalized decision rules through horizontal and vertical data reduction, Computational Intelligence: An International Journal, 17, 685, 10.1111/0824-7935.00169
Hu, 1995, A rough set approach to compute all maximal generalized rules, Journal of Computing and Information, 1, 1078
Hu, 2004, A new rough set model based on database systems, Journal of Fundamental Informatics, 59, 135
Hvidsten, 2005, Discovering regulatory binding-site modules using rule-based learning, Genome Research, 6, 856, 10.1101/gr.3760605
M. Inuiguchi, Generalizations of rough sets: from crisp to fuzzy cases. In: Tsumoto et al. [337], pp. 26–37 (plenary talk).
2003, vol. 125
T. Iwiński, Rough analysis of lattices, Working papers, vol. 23. University of Carlos III, Madrid, 1991.
J. Järvinen, Representation of information systems and dependence spaces, and some basic algorithms. Licentiate’s thesis. Ph.D. thesis, University of Turku, Department of Mathematics, Turku, Finland, 1997.
Järvinen, 2002, On the structure of rough approximations, Fundamenta Informaticae, 53, 135
Jech, 1997
Jelonek, 1997, Feature subset selection for classification of histological images, Artificial Intelligence in Medicine, 9, 227, 10.1016/S0933-3657(96)00375-2
Jensen, 2004, Semantics-preserving dimensionality reduction: rough and fuzzy-rough approaches, IEEE Transactions on Knowledge and Data Engineering, 16, 1457, 10.1109/TKDE.2004.96
R. Jensen, Q. Shen, A. Tuso, Finding rough set reducts with SAT. In: Śle¸zak et al. [300], pp. 194–203.
R. Keefe, Theories of Vagueness. Cambridge Studies in Philosophy, Cambridge, UK, 2000.
Keefe, 1997
Kim, 2001, Data classification based on tolerant rough set, Pattern Recognition, 34, 1613, 10.1016/S0031-3203(00)00057-1
Kim, 2000, A handwritten numeral character classification using tolerant rough set, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 923, 10.1109/34.877516
2002
J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron, Rough sets: a tutorial. In: Pal and Skowron [195], pp. 3–98.
B. Kostek, Soft computing-based recognition of musical sounds. In: Polkowski and Skowron [245], pp. 193–213.
Kostek, 1999, vol. 31
Kostek, 2005, vol. 3
B. Kostek, A. Czyżewski, Processing of musical metadata employing Pawlak’s flow graphs. In: Peters and Skowron [225], pp. 279–298.
B. Kostek, P. Szczuko, P. Żwan, P. Dalka, Processing of musical data employing rough sets and artificial neural networks. In: Peters and Skowron [226], pp. 112–133.
M. Kryszkiewicz, Maintenance of reducts in the varable precision rough set model. In: Rough Sets and Data Mining – Analysis of Imperfect Data. pp. 355–372.
M. Kryszkiewicz, Properties of incomplete information systems in the framework of rough sets. In: Polkowski and Skowron [244], pp. 422–450.
Kryszkiewicz, 1998, Rough set approach to incomplete information systems, Information Sciences, 112, 39, 10.1016/S0020-0255(98)10019-1
Kryszkiewicz, 1999, Rules in incomplete information systems, Information Sciences, 113, 271, 10.1016/S0020-0255(98)10065-8
M. Kryszkiewicz, K. Cichoń, Towards scalable algorithms for discovering rough set reducts. In: Peters et al. [228], pp. 120–143.
Lægreid, 2003, Discovering regulatory binding-site modules using rule-based learning, Genome Researche, 5, 965, 10.1101/gr.1144503
Latkowski, 2003, On decomposition for incomplete data, Fundamenta Informaticae, 54, 1
Latkowski, 2005, Flexible indiscernibility relations for missing attribute values, Fundamenta Informaticae, 67, 131
A.O.V. Le Blanc, Lesniewski’s Computative Protothetic. Report (Ph.D. thesis), University of Manchester, Manchester, UK, 2003.
G.W. Leibniz, Discourse on metaphysics. In: Ariew and Garber [4], pp. 35–68.
Leśniewski, 1929, Grungzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, 14, 1, 10.4064/fm-14-1-1-81
Li, 2006, A rough set-based case-based reasoner for text categorization, International Journal of Approximate Reasoning, 41, 229, 10.1016/j.ijar.2005.06.019
Lin, 1989, Neighborhood systems and approximation in database and knowledge base systems, 75
1996, Journal of the Intelligent Automation and Soft Computing, vol. 2
1995
2001
Lingras, 2001, Fuzzy – rough and rough – fuzzy serial combinations in neuro-computing, Neurocomputing, 36, 29, 10.1016/S0925-2312(00)00334-9
Lingras, 2001, Unsupervised rough set classification using gas, Journal of Intelligent Information Systems, 16, 215, 10.1023/A:1011219918340
Lingras, 2001, Application of rough genetic algorithms, Computational Intelligence: An International Journal, 17, 435, 10.1111/0824-7935.00156
Lingras, 2004, Interval set clustering of Web users with rough K-means, Journal of Intelligent Information Systems, 23, 5, 10.1023/B:JIIS.0000029668.88665.1a
Liu, 2001, Rough problem settings for ilp dealing with imperfect data, Computational Intelligence: An International Journal, 17, 446, 10.1111/0824-7935.00157
Łukasiewicz, 1970, Die logischen Grundlagen der Wahrscheinlichkeitsrechnung, 1913, 16
2005
J. Małuszyński, A. Vitória, Toward rough datalog. In: Pal et al. [194], pp. 297–332.
S. Marcus, The paradox of the heap of grains, in respect to roughness, fuzziness and negligibility. In: Polkowski and Skowron [243], pp. 19–23.
Marek, 1986, Approximating sets with equivalence relations, Theoretical Computer Science, 48, 145, 10.1016/0304-3975(86)90092-7
Marek, 1999, Contributions to the theory of rough sets, Fundamenta Informaticae, 39, 389, 10.3233/FI-1999-39404
Menasalvas, 2006, Data mining as generalization: a formal model, 99
H. Midelfart, Supervised learning in the gene ontology. Part I: rough set framework. Part II: a bottom-up algorithm. In: Peters and Skowron [227], pp. 69–97, 98–124.
Midelfart, 2004, Learning rough set classifiers from gene expression and clinical data, Fundamenta Informaticae, 2, 155
Mill, 1862
Mitchel, 1999, Machine Learning
P. Mitra, S. Mitra, S.K. Pal, Modular rough fuzzy mlp: Evolutionary design. In: Skowron et al. [280], pp. 128–136.
Mitra, 2003, Non-convex clustering using expectation maximization algorithm with rough set initialization, Pattern Recognition Letters, 24, 863, 10.1016/S0167-8655(02)00198-8
Mitra, 2003
Miyamoto, 1998, Application of rough sets to information retrieval, Journal of the American Society for Information Science, 49, 195, 10.1002/(SICI)1097-4571(199803)49:3<195::AID-ASI2>3.0.CO;2-K
Miyamoto, 2004, Generalizations of multisets and rough approximations, International Journal of Intelligent Systems, 19, 639, 10.1002/int.20015
M.J. Moshkov, M. Piliszczuk, On partial tests and partial reducts for decision tables. In: Śle¸zak et al. [300], pp. 149–155.
A. Mrózek, Rough sets in computer implementation of rule-based control of industrial processes. In: Słowiński [305], pp. 19–31.
T. Munakata, Rough control: a perspective. In: Rough Sets and Data Mining – Analysis of Imperfect Data, pp. 77–88.
M. Muraszkiewicz, H. Rybiński, Towards a parallel rough sets computer. In: Ziarko [376], pp. 434–443.
Nakamura, 1994, Fuzzy quantifiers and rough quantifiers, 111
A. Nakamura, On a logic of information for reasoning about knowledge. In: Ziarko [376], pp. 186–195.
Nakamura, 1996, A rough logic based on incomplete information and its application, International Journal of Approximate Reasoning, 15, 367, 10.1016/S0888-613X(96)00075-8
Nguyen, 2003, On the decision table with maximal number of reducts, Electronic Notes in Theoretical Computer Science, 82, 10.1016/S1571-0661(04)80718-7
H.S. Nguyen, Approximate boolean reasoning approach to rough sets and data mining. In: Śle¸zak et al. [301], pp. 12–22 (plenary talk).
Nguyen, 1999, Rough sets and association rule generation, Fundamenta Informaticae, 40, 383, 10.3233/FI-1999-40403
H.S. Nguyen, D. Śle¸zak. Approximate reducts and association rules – correspondence and complexity results. In: Skowron et al. [280], pp. 137–145.
S.H. Nguyen, Regularity analysis and its applications in data mining. In: Polkowski et al. [241], pp. 289–378.
S.H. Nguyen, J. Bazan, A. Skowron, H.S. Nguyen, Layered learning for concept synthesis. In: Peters and Skowron [225], pp. 187–208.
S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods. In: Sixth International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems IPMU’1996, Granada, Spain, 1996, vol. III, pp. 1451–1456.
T.T. Nguyen, Eliciting domain knowledge in handwritten digit recognition. In: Pal et al. [189], pp. 762–767.
T.T. Nguyen, A. Skowron, Rough set approach to domain knowledge approximation. In: Wang et al. [350], pp. 221–228.
T. Nishino, M. Nagamachi, H. Tanaka, Variable precision Bayesian rough set model and its application to human evaluation data. In: Śle¸zak et al. [300], pp. 294–303.
Norsett, 2004, Gene expression based classification of gastric carcinoma, Cancer Letters, 2, 227, 10.1016/j.canlet.2004.01.022
Novotný, 1991, Algebraic theory of independence in information systems, Fundamenta Informaticae, 14, 454, 10.3233/FI-1991-14404
Novotný, 1991, Algebraic theory of independence in information systems, Fundamenta Informaticae, 14, 454, 10.3233/FI-1991-14404
Novotný, 1992, On a problem concerning dependence space, Fundamenta Informaticae, 16, 275, 10.3233/FI-1992-163-405
C.-S. Ong, J.-J. Huang, G.-H. Tzeng, Using rough set theory for detecting the interaction terms in a generalized logit model. In: Tsumoto et al. [337], pp. 624–629.
Orłowska, 1984, Semantics of vague concepts, 465
E. Orłowska, Rough concept logic. In: Skowron [272], pp. 177–186.
Orłowska, 1987, Reasoning about vague concepts, Bulletin of the Polish Academy of Sciences, Mathematics, 35, 643
Orłowska, 1989, Logic for reasoning about knowledge, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 35, 559, 10.1002/malq.19890350612
Orłowska, 1990, Kripke semantics for knowledge representation logics, Studia Logica, 49, 255, 10.1007/BF00935602
1997, vol. 13
E. Orłowska, Z. Pawlak, Expressive power of knowledge representation system. Technical Report, Institute of Computer Science, Polish Academy of Sciences 432.
Orłowska, 1984, Representation of non–deterministic information, Theoretical Computer Science, 29, 27, 10.1016/0304-3975(84)90010-0
Pagliani, 1993, From concept lattices to approximation spaces: algebraic structures of some spaces of partial objects, Fundamenta Informaticae, 18, 1, 10.3233/FI-1993-18102
Pagliani, 1996, Rough sets and nelson algebras, Fundamenta Informaticae, 27, 205, 10.3233/FI-1996-272308
Pagliani, 2004, Pretopologies and dynamic spaces, Fundamenta Informaticae, 59, 221
Pal, 2004, Soft data mining, computational theory of perceptions, and rough-fuzzy approach, Information Sciences, 163, 5, 10.1016/j.ins.2003.03.014
2005, vol. 3776
Pal, 2004, Rough self organizing map, Applied Intelligence, 21, 289, 10.1023/B:APIN.0000043561.99513.69
Pal, 2004, Case generation using rough sets with fuzzy representation, IEEE Transactions on Knowledge and Data Engineering, 16, 292, 10.1109/TKDE.2003.1262181
Pal, 2004
2001, Rough-neuro computing, Neurocomputing, 36
2004
1999
Pancerz, 2004, Discovering concurrent models from data tables with the ROSECON system, Fundamenta Informaticae, 60, 251
Paun, 1997, Rough set approximation of languages, Fundamenta Informaticae, 32, 149, 10.3233/FI-1997-32204
Z. Pawlak, Rough real functions and rough controllers. In: Rough Sets and Data Mining – Analysis of Imperfect Data, pp. 139–147.
Z. Pawlak, Classification of Objects by Means of Attributes, Reports, vol. 429. Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1981.
Pawlak, 1981, Information systems – theoretical foundations, Information Systems, 6, 205, 10.1016/0306-4379(81)90023-5
Z. Pawlak, Rough Relations, Reports, vol. 435. Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1981.
Pawlak, 1982, Rough sets, International Journal of Computer and Information Sciences, 11, 341, 10.1007/BF01001956
Pawlak, 1984, Rough classification, International Journal of Man-Machine Studies, 20, 469, 10.1016/S0020-7373(84)80022-X
Pawlak, 1987, Rough logic, Bulletin of the Polish Academy of Sciences, Technical Sciences, 35, 253
Pawlak, 1991, Decision logic, Bulletin of the EATCS, 44, 201
Pawlak, 1991, vol. 9
Pawlak, 1992, Concurrent versus sequential – the rough sets perspective, Bulletin of the EATCS, 48, 178
Z. Pawlak, A. Skowron, Rough sets: Some extensions, Information Sciences, in press, doi:10.1016/j.ins.2006.06.006.
Z. Pawlak, L. Polkowski, A. Skowron, Rough sets and rough logic: a KDD perspective. In: Polkowski et al. [241], pp. 583–646.
Pawlak, 1993, A rough set approach for decision rules generation, 114
Pawlak, 1994, Rough membership functions, 251
Z. Pawlak, A. Skowron, Rough sets and boolean reasoning, Information Sciences, in press, doi:10.1016/j.ins.2006.06.007.
Pawlak, 1986, Rough classification of patients after highly selective vagotomy for duodenal ulcer, International Journal of Man-Machine Studies, 24, 413, 10.1016/S0020-7373(86)80001-3
Pawlak, 1990, Rough sets: probabilistic versus deterministic approach, vol. 3, 227
Pedrycz, 2001, Calibration of software quality: fuzzy neural and rough neural computing approaches, Neurocomputing, 36, 149, 10.1016/S0925-2312(00)00340-4
2001, International Journal of Intelligent Systems, vol. 16
J.F. Peters, Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces. In: Peters and Skowron [226], pp. 153–174.
Peters, 2001, Rough neural computing in signal analysis, Computational Intelligence: An International Journal, 17, 493, 10.1111/0824-7935.00160
Peters, 2006, Reinforcement learning with approximation spaces, Fundamenta Informaticae, 71, 1
Peters, 2003, Towards a software change classification system: A rough set approach, Software Quality Journal, 11, 121, 10.1023/A:1023764510838
J.F. Peters, S. Ramanna, Approximation space for software models. In: Peters et al. [228], pp. 338–355.
J.F. Peters, S. Ramanna, M.S. Szczuka, Towards a line-crawling robot obstacle classification system: a rough set approach. In: Wang et al. [350], pp. 303–307.
2004, vol. 3100
2005, vol. 3400
2005, vol. 3700
2004, vol. 3135
Peters, 2000, An application of rough set methods in control design, Fundamenta Informaticae, 43, 269, 10.3233/FI-2000-43123414
Peters, 2003, Rough sets and information granulation, vol. 2715, 370
Peters, 2003, Classification of meteorological volumetric radar data using rough set methods, Pattern Recognition Letters, 24, 911, 10.1016/S0167-8655(02)00203-9
J.F. Peters, M.S. Szczuka, Rough neurocomputing: A survey of basic models of neurocomputation. In: Alpigini et al. [1], pp. 308–315.
J.F. Peters, K. Ziaei, S. Ramanna, Approximate time rough control: Concepts and application to satellite attitude control. In: Polkowski and Skowron [243], pp. 491–498.
Pindur, 2004, Hyperplane aggregation of dominance decision rules, Fundamenta Informaticae, 61, 117
Polkowski, 2002, On fractal dimension in information systems. toward exact sets in infinite information systems, Fundamenta Informaticae, 50, 305
Polkowski, 2002
Polkowski, 2003, Rough mereology: A rough set paradigm for unifying rough set theory and fuzzy set theory, Fundamenta Informaticae, 54, 67
Polkowski, 2004, A note on 3-valued rough logic accepting decision rules, Fundamenta Informaticae, 61, 37
L. Polkowski, Toward rough set foundations. mereological approach. In: Tsumoto et al. [337], pp. 8–25. (plenary talk).
2000, vol. 56
Polkowski, 1996, Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning, 15, 333, 10.1016/S0888-613X(96)00072-2
1998, vol. 1424
1998, vol. 18
1998, vol. 19
L. Polkowski, A. Skowron, Rough mereology in information systems. a case study: Qualitative spatial reasoning. In: Polkowski et al. [241], pp. 89–135.
Polkowski, 2001, Rough mereological calculi of granules: a rough set approach to computation, Computational Intelligence: An International Journal, 17, 472, 10.1111/0824-7935.00159
Pomykała, 1988, The stone algebra of rough sets, Bulletin of the Polish Academy of Sciences, Mathematics, 36, 495
G.-F. Qiu, W.-X. Zhang, W.-Z. Wu, Characterizations of attributes in generalized approximation representation spaces. In: Śle¸zak et al. [300], pp. 84–93.
Quafafou, 2000, Generalized rough sets based feature selection, Intelligent Data Analysis, 4, 3, 10.3233/IDA-2000-4102
Radzikowska, 2002, A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126, 137, 10.1016/S0165-0114(01)00032-X
A. Radzikowska, E.E. Kerre, Fuzzy rough sets based on residuated lattices. In: Peters et al. [228], pp. 278–296.
Ras, 2002, Reducts-driven query answering for distributed autonomous knowledge systems, International Journal of Intelligent Systems, 17, 113, 10.1002/int.10011
Z.W. Ras, A. Dardzinska, Collaborative query processing in DKS controlled by reducts. In: Alpigini et al. [1], pp. 189–196.
Rasiowa, 1994, Axiomatization and completeness of uncountably valued approximation logic, Studia Logica, 53, 137, 10.1007/BF01053027
Rasiowa, 1985, Approximation logic, vol. 31, 123
C. Rauszer, An equivalence between indiscernibility relations in information systems and a fragment of intuitionistic logic. In: Skowron [272], pp. 298–317.
Rauszer, 1985, An equivalence between theory of functional dependence and a fragment of intuitionistic logic, Bulletin of the Polish Academy of Sciences, Mathematics, 33, 571
Rauszer, 1992, Logic for information systems, Fundamenta Informaticae, 16, 371, 10.3233/FI-1992-163-410
Rauszer, 1994, Knowledge representation systems for groups of agents, 217
Read, 1994
Rissanen, 1978, Modeling by shortes data description, Automatica, 14, 465, 10.1016/0005-1098(78)90005-5
Rissanen, 1985, Minimum-description-length principle, 523
Roy, 2003, Fuzzy discretization of feature space for a rough set classifier, Pattern Recognition Letters, 24, 895, 10.1016/S0167-8655(02)00201-5
Russell, 1903
Russell, 1923, Vagueness, The Australian Journal of Psychology and Philosophy, 1, 84, 10.1080/00048402308540623
Russell, 1940
Sever, 1998, The status of research on rough sets for knowledge discovery in databases, vol. 2, 673
Shan, 1994, An incremental learning algorithm for constructing decision rules, 326
Simons, 1987
1985, vol. 208
Skowron, 1993, Boolean reasoning for decision rules generation, vol. 689, 295
Skowron, 1995, Extracting laws from decision tables, Computational Intelligence: An International Journal, 11, 371, 10.1111/j.1467-8640.1995.tb00039.x
Skowron, 2000, Rough sets in KDD – plenary talk, 1
Skowron, 2001, Rough sets and boolean reasoning, vol. 70, 95
A. Skowron, Approximate reasoning in distributed environments. In: Zhong and Liu [374], pp. 433–474.
Skowron, 2005, Rough sets and vague concepts, Fundamenta Informaticae, 64, 417
Skowron, 1994, From rough set theory to evidence theory, 193
A. Skowron, S. Ohsuga, N. Zhong (Eds.). Proceedings of the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99), Yamaguchi, November 9–11, 1999, Lecture Notes in Artificial Intelligence, vol. 1711, Springer-Verlag, Heidelberg, 1999.
2003, Pattern Recognition Letters, vol. 24
Skowron, 2002, A rough set perspective on data and knowledge, 134
A. Skowron, J. Peters, Rough sets: trends and challenges. In: Wang et al. [350], pp. 25–34 (plenary talk).
A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems. In: Słowiński [305], pp. 331–362.
Skowron, 1996, Tolerance approximation spaces, Fundamenta Informaticae, 27, 245, 10.3233/FI-1996-272311
A. Skowron, J. Stepaniuk, Information granules and rough-neural computing. In: Pal et al. [194], pp. 43–84.
A. Skowron, J. Stepaniuk, Ontological framework for approximation. In: Śle¸zak et al. [300], pp. 718–727.
Skowron, 2003, Rough sets and infomorphisms: towards approximation of relations in distributed environments, Fundamenta Informaticae, 54, 263
A. Skowron, R. Swiniarski, Rough sets and higher order vagueness. In: Śle¸zak et al. [300], pp. 33–42.
A. Skowron, R. Swiniarski, P. Synak, Approximation spaces and information granulation. In: Peters and Skowron [226], pp. 175–189.
Skowron, 2004, Complex patterns, Fundamenta Informaticae, 60, 351
Skowron, 2004, Reasoning in information maps, Fundamenta Informaticae, 59, 241
2003, vol. 82(4)
D. Śle¸zak, Approximate reducts in decision tables. In: Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’1996. Granada, Spain, 1996, vol. III, pp. 1159–1164.
D. Śle¸zak, Approximate Markov boundaries and Bayesian networks. In: Inuiguchi et al. [97], pp. 109–121.
Śle¸zak, 2000, Normalized decision functions and measures for inconsistent decision tables analysis, Fundamenta Informaticae, 44, 291
D. Śle¸zak, Various approaches to reasoning with frequency-based decision reducts: A survey. In: Polkowski et al. [241], pp. 235–285.
Śle¸zak, 2002, Approximate entropy reducts, Fundamenta Informaticae, 53, 365
2005, vol. 3641
2005, vol. 3642
Śle¸zak, 2005, The investigation of the Bayesian rough set model, International Journal of Approximate Reasoning, 40, 81, 10.1016/j.ijar.2004.11.004
Słowiński, 1998, Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis, Medical Informatics, 13, 143, 10.3109/14639238809010096
K. Słowiński, J. Stefanowski, Medical information systems – problems with analysis and way of solution. In: Pal and Skowron [195], pp. 301–315.
1992, vol. 11
R. Słowiński, J. Stefanowski (Eds.). Special issue: Proceedings of the First International Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz, Poznań, Poland, September 2–4 (1992). In: Foundations of Computing and Decision Sciences, vol. 18(3–4). 1993.
Słowiński, 1996, Rough set reasoning about uncertain data, Fundamenta Informaticae, 27, 229, 10.3233/FI-1996-272310
Słowiński, 2000, Rough sets processing of inconsistent information, Control and Cybernetics, 29, 379
Słowiński, 2002, Application of rule induction and rough sets to verification of magnetic resonance diagnosis, Fundamenta Informaticae, 53, 345
Słowiński, 1997, Similarity relation as a basis for rough approximations, vol. 4, 17
Smith, 1995, Formal ontology, common sense and cognitive science, International Journal of Human-Computer Studies, 43, 641, 10.1006/ijhc.1995.1067
Stefanowski, 2001, Incomplete information tables and rough classification, Computational Intelligence, 17, 545, 10.1111/0824-7935.00162
Stefanowski, 2001, Minimizing business credit risk by means of approach integrating decision rules and case based learning, Journal of Intelligent Systems in Accounting, Finance and Management, 10, 97, 10.1002/isaf.197
Stell, 2000, Boolean connection algebras: A new approach to the region-connection calculus, Artificial Intelligence, 122, 111, 10.1016/S0004-3702(00)00045-X
J. Stepaniuk, Approximation spaces, reducts and representatives. In: Polkowski and Skowron [245], pp. 109–126.
J. Stepaniuk, Knowledge discovery by application of rough set models. In: Polkowski et al. [241], pp. 137–233.
K. Sugihara, Y. Maeda, H. Tanaka, Interval evaluation by AHP with rough set concept. In: Skowron et al. [280], pp. 375–381.
Z. Suraj, Rough set methods for the synthesis and analysis of concurrent processes. In: Polkowski et al. [241], pp. 379–488.
J. Swift. Gulliver’s Travels into Several Remote Nations of the World. (ananymous publisher), London, M, DCC, XXVI, 1726.
R. Swiniarski, Rough sets and Bayesian methods applied to cancer detection. In: Polkowski and Skowron [243], pp. 609–616.
R. Swiniarski, Rough sets and principal component analysis and their applications. data model building and classification. In: Pal and Skowron [195], pp. 275–300.
R. Swiniarski, An application of rough sets and Haar wavelets to face recognition. In: Ziarko and Yao [380], pp. 561–568.
R. Swiniarski, L. Hargis, A new halftoning method based on error diffusion with rough set filterin. In: Polkowski and Skowron [245], pp. 336–342.
Swiniarski, 2001, Rough sets as a front end of neural networks texture classifiers, Neurocomputing, 36, 85, 10.1016/S0925-2312(00)00337-4
R.W. Swiniarski, A. Skowron, Independent component analysis, principal component analysis and rough sets in face recognition. In: Peters and Skowron [225], pp. 392–404.
Szczuka, 2001, Refining classifiers with neural networks, International Journal of Intelligent Systems, 16, 39, 10.1002/1098-111X(200101)16:1<39::AID-INT5>3.0.CO;2-X
Szczuka, 2001, Neuro-wavelet classifiers for EEG signals based on rough set methods, Neurocomputing, 36, 103, 10.1016/S0925-2312(00)00338-6
H. Tanaka, Dual mathematical models based on rough approximations in data analysis. In: Wang et al. [350], pp. 52–59.
Tanaka, 1999, Interval regression analysis with polynomials and its similarity to rough sets concept, Fundamenta Informaticae, 37, 71, 10.3233/FI-1999-371204
Tarski, 1983
2001, vol. 2253
Tsumoto, 1998, Automated induction of medical expert system rules from clinical databases based on rough set theory, Information Sciences, 112, 67, 10.1016/S0020-0255(98)10021-X
S. Tsumoto, Empirical induction on medical system expert rules based on rough set theory. In: Polkowski and Skowron [243], pp. 307–323.
Tsumoto, 2004, Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model, Information Sciences, 162, 65, 10.1016/j.ins.2004.03.002
Tsumoto, 2005, Automated discovery of chronological patterns in long time-series medical datasets, International Journal of Intelligent Systems, 20, 737, 10.1002/int.20093
S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, A. Nakamura (Eds.). Proceedings of the The Fourth International Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, November 6-8, University of Tokyo, Japan. The University of Tokyo, Tokyo, 1996.
2004, vol. 3066
Tsumoto, 1995, PRIMEROSE: probabilistic rule induction method based on rough sets and resampling methods, Computational Intelligence: An International Journal, 11, 389, 10.1111/j.1467-8640.1995.tb00040.x
Tsumoto, 1996, The application of rough sets-based data mining technique to differential diagnosis of meningoenchepahlitis, vol. 1079, 438
Vakarelov, 1991, A modal logic for similarity relations in Pawlak knowledge representation systems, Fundamenta Informaticae, 15, 61, 10.3233/FI-1991-15105
Vakarelov, 1991, Modal logics for knowledge representation systems, Theoretical Computer Science, 90, 433
Vakarelov, 1995, A duality between Pawlak’s knowledge representation systems and bi-consequence systems, Studia Logica, 55, 205, 10.1007/BF01053038
D. Vakarelov, A modal characterization of indiscernibility and similarity relations in Pawlak’s information systems. In: Śle¸zak et al. [300], pp. 12–22 (plenary talk).
J.J. Valdés, A.J. Barton, Relevant attribute discovery in high dimensional data based on rough sets and unsupervised classification: Application to leukemia gene expression. In: Śle¸zak et al. [301], pp. 362–371.
Varzi, 2005, Change, temporal parts, and the argument from vagueness, Dialectica, 59, 485, 10.1111/j.1746-8361.2005.01039.x
A. Vitória, A framework for reasoning with rough sets. Licentiate Thesis, Linköping University 2004. In: Peters and Skowron [227], pp. 178–276.
Vopenka, 1979
Wakulicz-Deja, 1997, Diagnose progressive encephalopathy applying the rough set theory, International Journal of Medical Informatics, 46, 119, 10.1016/S1386-5056(97)00061-0
Wakulicz-Deja, 2003, Applying rough set theory to multi stage medical diagnosing, Fundamenta Informaticae, 54, 387
2003, vol. 2639
Wang, 2001, Investigation on AQ11, ID3 and the principle of discernibility matrix, Journal of Computer Science and Technology, 16, 1, 10.1007/BF02948848
Wang, 2001, Reduction algorithms based on discernibility matrix: the ordered attributes method, Journal of Computer Science and Technology, 16, 489, 10.1007/BF02943234
A. Wasilewska, Topological rough algebras. In: Rough Sets and Data Mining – Analysis of Imperfect Data. pp. 411–425.
Wasilewska, 1995, Rough equality algebras, 26
A. Wasilewska, L. Vigneron, Rough algebras and automated deduction. In: Polkowski and Skowron [244], pp. 261–275.
Wieczorkowska, 2003, Application of temporal descriptors to musical instrument sound recognition, Journal of Intelligent Information Systems, 21, 71, 10.1023/A:1023505917953
A. Wojna, Analogy based reasoning in classifier construction. In: Peters and Skowron [227], pp. 277–374.
Wong, 1987, Comparison of the probabilistic approximate classification and the fuzzy model, Fuzzy Sets and Systems, 21, 357, 10.1016/0165-0114(87)90135-7
Wróblewski, 1996, Theoretical foundations of order-based genetic algorithms, Fundamenta Informaticae, 28, 423, 10.3233/FI-1996-283414
J. Wróblewski, Genetic algorithms in decomposition and classification problem. In: Polkowski and Skowron [245], pp. 471–487.
J. Wróblewski, Adaptive aspects of combining approximation spaces. In: Pal et al. [194], pp. 139–156.
Wu, 2003, Generalized fuzzy rough sets, Information Sciences, 151, 263, 10.1016/S0020-0255(02)00379-1
Wu, 2004, Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences, 159, 233, 10.1016/j.ins.2003.08.005
Y.Y. Yao, Generalized rough set models. In: Polkowski and Skowron [244], pp. 286–318.
Yao, 2001, Information granulation and rough set approximation, International Journal of Intelligent Systems, 16, 87, 10.1002/1098-111X(200101)16:1<87::AID-INT7>3.0.CO;2-S
Yao, 1998, Interpretation of belief functions in the theory of rough sets, Information Sciences, 104, 81, 10.1016/S0020-0255(97)00076-5
Y.Y. Yao, S.K.M. Wong, T.Y. Lin, A review of rough set models. In: Rough Sets and Data Mining – Analysis of Imperfect Data, pp. 47–75.
Zhang, 2003, Approaches to knowledge reductions in inconsistent systems, International Journal of Intelligent Systtems, 18, 989, 10.1002/int.10128
Zheng, 2004, RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm, Fundamenta Informaticae, 59, 299
Zhong, 2003, Meningitis data mining by cooperatively using GDT-RS and RSBR, Pattern Recognition Letters, 24, 887, 10.1016/S0167-8655(02)00200-3
2004
Ziarko, 1993, Variable precision rough set model, Journal of Computer and System Sciences, 46, 39, 10.1016/0022-0000(93)90048-2
1994
1995, An International Journal, 11
1996, Fundamenta Informaticae, 27
Ziarko, 2001, Probabilistic decision tables in the variable precision rough set model, Computational Intelligence, 17, 593, 10.1111/0824-7935.00165
2001, vol. 2005