Route planning for orchard operations

Computers and Electronics in Agriculture - Tập 113 - Trang 51-60 - 2015
D. Bochtis1, H.W. Griepentrog2, S. Vougioukas3, P. Busato4, R. Berruto4, K. Zhou1
1Department of Engineering, University of Aarhus, Igne Lehmanns Gade 10, DK-8000, Aarhus C, Denmark
2Institute of Agricultural Engineering, University of Hohenheim, 70599 Stuttgart, Germany
3Department of Biological and Agricultural Engineering, University of California, 95616 Davis, USA
4DEIAFA Department, University of Turin, via Leonardo da Vinci 44, 10095 Grugliasco, Turin, Italy

Tài liệu tham khảo

Barawid Jr, O.C., Mizushima, A., Ishii, K., Noguchi, N., 2007. Development of an Autonomous Navigation System using a Two-dimensional Laser Scanner in an Orchard Application. Beck, A.B., Andersen, N.A, Andersen, J.C., Ravn, O., 2010. MobotWare—a plug-in based framework for mobile robots. In: Proceedings IFAC symposium on intelligent autonomous vehicles, July 2010, Lecce, Italy, International Federation of Automatic Control (IFAC). Bochtis, D.D., 2008. Planning and Control of a Fleet of Agricultural Machines for Optimal Management of Field Operations. Greece: Aristotle University. Ph.D. Thesis. Bochtis, 2009, The vehicle routing problem in field logistics: part I, Biosyst. Eng., 104, 447, 10.1016/j.biosystemseng.2009.09.003 Bochtis, 2008, Minimising the non-working distance travelled by machines operating in a headland field pattern, Biosyst. Eng., 101, 1, 10.1016/j.biosystemseng.2008.06.008 Bochtis, 2009, A mission planner for an autonomous tractor, Trans. ASABE, 52, 1429, 10.13031/2013.29123 Bochtis, 2013, Benefits from optimal route planning based on B-patterns, Biosyst. Eng., 115, 389, 10.1016/j.biosystemseng.2013.04.006 De-An, 2011, Design and control of an apple harvesting robot, Biosyst. Eng., 110, 112, 10.1016/j.biosystemseng.2011.07.005 Ferguson, 2006, Using interpolation to improve path planning: the field D∗ algorithm, J. Field Robot., 23, 79, 10.1002/rob.20109 Griepentrog, 2013, Robots for field operations with comprehensive multilayer control, Künstl Intell, 27, 325, 10.1007/s13218-013-0266-z Hiremath, 2014, Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter, Comput. Electr. Agr., 100, 41, 10.1016/j.compag.2013.10.005 Kise, 2005, A stereovision-based crop row detection method for tractor-automated guidance, Biosyst. Eng., 90, 357, 10.1016/j.biosystemseng.2004.12.008 Linker, 2008, Path-planning algorithm for vehicles operating in orchards, Biosyst. Eng., 101, 152, 10.1016/j.biosystemseng.2008.06.002 Rovira-Mas, 2005, Houghtransform-based vision algorithm for crop row detection of an automated agricultural vehicle, J. Automob. Eng., 219, 999, 10.1243/095440705X34667 Subramanian, 2006, Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation, Comput. Electr. Agr., 53, 130, 10.1016/j.compag.2006.06.001 Subramanian, 2009, Sensor fusion using fuzzy logic enhanced Kalman filter for autonomous vehicle guidance in citrus groves, Trans. ASABE, 52, 1411, 10.13031/2013.29121 Tanigaki, 2008, Cherry-harvesting robot, Comput. Electr. Agr., 63, 65, 10.1016/j.compag.2008.01.018 Tosaki, 1996, Development of microcomputer controlled driverless air blast sprayer (Part 1), J. JSAM, 58, 101 Tsubota, R., Noguchi, N., Mizushima, A., 2004. Automatic guidance with a laser scanner for a robot tractor in an orchard. In: Zhang, Q., Iida, M., Mizushima, A. (Eds.), Proceedings Automation Technology for Off-Road Equipment, 7–8 October 2004, Kyoto, Japan, ASAE Publication Number 701P1004. Yekutieli, O., Pegna, F.G., 2002. Automatic guidance of a tractor in a vineyard. In: Proceedings of the Automation Technology for Off-road Equipment, Illinois, USA.