Round robin comparison study on the form measurement of optical freeform surfaces

Ines Fortmeier1, Reyko Schachtschneider2, Vít Lédl3, Ondřej Matoušek3, Jens Siepmann4, Antonia Harsch5, Rolf Beisswanger5, Youichi Bitou6, Yasuhiko Kondo6, Michael Schulz1, Clemens Elster2
1Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, 38116, Germany
2Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, Berlin, 10587, Germany
3Regional Centre for Special Optics and Optoelectronic Systems (TOPTEC) Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, Praha 8, 182 00, Czech Republic
4Mahr GmbH, Carl-Zeiss-Promenade 10, Jena, 07745, Germany
5Institut für Technische Optik, Universtiät Stuttgart, Pfaffenwaldring 9, Stuttgart, 70569, Germany
6National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Ibaraki, 305-8563, Japan

Tóm tắt

AbstractA round robin comparison of freeform form measurements was carried out by the project partners and stakeholders of a European metrology research project. Altogether six measuring instruments were considered: five different (pointwise and areal) optical devices and one tactile device. Three optical freeform surfaces were used for the comparison measurements, where two specimens were measured by five instruments and one specimen by four instruments. In this paper, the evaluation methods and results of this round robin are presented for the three freeform surfaces made from a temperature-stable material, Super Invar®. The freeforms had diameters of 40 mm, 50 mm and 100 mm and best-fit radii of 39.75 mm (convex), 40.9 mm (convex) and 423.5 mm (concave). For comparison, the bilateral pointwise differences between the available measurements were calculated. The root-mean-square values of these differences ranged from 15 nm to 110 nm (neglecting spherical contributions) and provided an insight into the status of typical freeform measurement capabilities for optical surfaces.

Từ khóa


Tài liệu tham khảo

Pfeffer, M.M.: Aspheric optics: from design to manufacturing and aspheric metrology. Adv. Opt. Technol. 5(3), 199–200 (2016).

Lee, W.B., Cheung, B.C.F.: Surface Generation in Ultra-precision Diamond Turning: Modelling and Practices. John Wiley & Sons, Inc. (2003).

Saraswathamma, K.: Magnetorheological Finishing: A review. Int. Conf. Adv. Mech. Sci. 2014 Spec. Issue-2, 168–173 (2014). https://doi.org/10.14741/Ijcet/Spl.2.2014.30.

Schaefer, D.: Basics of ion beam figuring and challenges for real optics treatment. Proc. SPIE. 10829 (2018). https://doi.org/10.1117/12.2318572.

Kelm, A., Boerret, R., Sinzinger, S.: Modeling of the polishing process for aspheric optics. Proc. SPIE. 7102 (2008). https://doi.org/10.1117/12.796388.

Schachtschneider, R., Fortmeier, I., Stavridis, M., Asfour, J., Berger, G., Bergmann, R.B., Beutler, A., Blümel, T., Klawitter, H., Kubo, K., Liebl, J., Löffler, F., Meeß, R., Pruss, C., Ramm, D., Sandner, M., Schneider, G., Wendel, M., Widdershoven, I., Schulz, M., Elster, C.: Interlaboratory comparison measurements of aspheres. Meas. Sci. Technol. 29(5), 055010 (2018). https://doi.org/10.1088/1361-6501/aaae96.

Bergmans, R.H., Nieuwenkamp, H.J., Kok, G.J.P., Blobel, G., Nouira, H., Küng, A., Baas, M., Tevoert, M., Baer, G., Stuerwald, S.: Comparison of asphere measurements by tactile and optical metrological instruments. Meas. Sci. Technol. 26(10), 105004 (2015). https://doi.org/10.1088/0957-0233/26/10/105004.

Beutler, A.: Comparison of 2D and 3D measurements of aspheres with a tactile and optical sensor on one measuring instrument. In: Classical Optics 2014, p. OTu4A.1. Optical Society of America (2014). http://www.osapublishing.org/abstract.cfm?URI=OFT-2014-OTu4A.1. Accessed 26 June 2019.

Beutler, A.: Metrology for the production process of aspheric lenses. Adv. Opt. Technol. 5(3), 211–228 (2016). https://doi.org/10.1515/aot-2016-0011.

EMPIR project 15SIB01: FreeFORM (2016). https://www.ptb.de/emrp/freeform-home.html. Accessed 26 June 2019.

Fortmeier, I., Schulz, M., Meeß, R.: Traceability of form measurements of freeform surfaces: metrological reference surfaces. Opt. Eng. 58(9), 092602 (2019). https://doi.org/10.1117/1.OE.58.9.092602.

Garbusi, E., Pruss, C., Osten, W.: Interferometer for precise and flexible asphere testing. Opt. Lett. 33(24), 2973–2975 (2008).

Baer, G., Schindler, J., Pruss, C., Siepmann, J., Osten, W.: Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces. Opt. Express. 22(25), 31200–31211 (2014). https://doi.org/10.1364/OE.22.031200.

Panasonic (2019). https://www.panasonic.com/global/business/ua3p.html. Accessed 26 June 2019.

Schachtschneider, R., Stavridis, M., Fortmeier, I., Schulz, M., Elster, C.: SimOptDevice: a library for virtual optical experiments. J. Sensors Sensor Syst. 8(1), 105–110 (2019). https://doi.org/10.5194/jsss-8-105-2019.

Huber, P.J.: Robust Statistics. In: Lovric, M. (ed.)International Encyclopedia of Statistical Science, pp. 1248–1251. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_594.