Rough linear transport equation with an irregular drift
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosio, L., Crippa, G.: Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. In: Transport Equations and Multi-D Hyperbolic Conservation Laws, pp. 3–57. Springer, Berlin (2008)
Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)
Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M.: Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. arXiv:1401.1530 (2014)
Caruana, M., Friz, P.K., Oberhauser, H.: A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. Inst. Henri Poincare C 28(1), 27–46 (2011)
Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of ODEs. arXiv:1205.1735 (2012)
Chouk, K., Gubinelli, M.: Nonlinear PDEs with modulated dispersion I: Nonlinear schrödinger equations. arXiv:1303.0822 (2013)
Chouk, K., Gubinelli, M.: Nonlinear PDEs with modulated dispersion II: Korteweg de vries equation. arXiv:1406.7675 (2014)
Coutin, L., Qian, Z.: Stochastic analysis, rough path analysis and fractional brownian motions. Probab. Theory Relat. Fields 122(1), 108–140 (2002)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, vol. 152. Cambridge University Press, Cambridge (2014)
Diehl, J., Friz, P.K., Stannat, W.: Stochastic partial differential equations: a rough path view. arXiv:1412.6557 (2014)
DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98(3), 511–547 (1989)
Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010)
Flandoli, F., Gubinelli, M., Priola, E.: Remarks on the stochastic transport equation with hölder drift. arXiv:1301.4012 (2013)
Friz, P., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures. Springer, Berlin (2014)
Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, vol. 1. Cambridge University Press, Cambridge (2010)
Gubinelli, M., Jara, M.: Regularization by noise and stochastic burgers equations. arXiv:1208.6551 (2012)
Gubinelli, M., Tindel, S., Torrecilla, I.: Controlled viscosity solutions of fully nonlinear rough PDEs. arXiv:1403.2832 (2014)
Hairer, M., Kelly, D.: Geometric versus non-geometric rough paths. arXiv:1210.6294 (2012)
Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes; the spatially dependent case. arXiv (preprint). arXiv:1403.4424 (2014)
Lyons, T., Caruana, M., Lévy, T.: Differential Equations Driven by Rough Paths. Springer, Berlin (2007)