Rough Burgers-like equations with multiplicative noise

Springer Science and Business Media LLC - Tập 155 - Trang 71-126 - 2011
Martin Hairer1, Hendrik Weber1
1Mathematics Department, University of Warwick, Coventry, UK

Tóm tắt

We construct solutions to vector valued Burgers type equations perturbed by a multiplicative space–time white noise in one space dimension. Due to the roughness of the driving noise, solutions are not regular enough to be amenable to classical methods. We use the theory of controlled rough paths to give a meaning to the spatial integrals involved in the definition of a weak solution. Subject to the choice of the correct reference rough path, we prove unique solvability for the equation and we show that our solutions are stable under smooth approximations of the driving noise.

Tài liệu tham khảo

Albeverio S., Röckner M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Relat. Fields 89(3), 347–386 (1991) Benth F.E., Deck T., Potthoff J.: A white noise approach to a class of non-linear stochastic heat equations. J. Funct. Anal. 146(2), 382–415 (1997) Bertini L., Cancrini N., Jona-Lasinio G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994) Caruana M., Friz P.K., Oberhauser H.: A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(1), 27–46 (2011) Chan T.: Scaling limits of Wick ordered KPZ equation. Commun. Math. Phys. 209(3), 671–690 (2000) Da Prato G., Debussche A.: Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1), 180–210 (2002) Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003) Da Prato G., Debussche A., Temam R.: Stochastic Burgers’ equation. Nonlinear Differential Equations Appl. 1(4), 389–402 (1994) Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992) Friz P., Victoir N.: Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46(2), 369–413 (2010) Friz P.K., Victoir N.B.: Multidimensional stochastic processes as rough paths. Cambridge Studies in Advanced Mathematics, vol. 120. Theory and applications. Cambridge University Press, Cambridge (2010) Garsia, A.M., Rodemich, E., Rumsey, H. Jr.: A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20, 565–578 (1970/1971) Gubinelli M.: Controlling rough paths. J. Funct. Anal. 216(1), 86–140 (2004) Gubinelli M., Tindel S.: Rough evolution equations. Ann. Probab. 38(1), 1–75 (2010) Gyöngy I.: Existence and uniqueness results for semilinear stochastic partial differential equations. Stoch. Process. Appl. 73(2), 271–299 (1998) Hairer M.: Rough stochastic PDEs. Commun. Pure Appl. Math. 64, 1547–1585 (2011) Hairer, M.: Singular perturbations to semilinear stochastic heat equations. Probab. Theory Relat. Fields (2011) Hairer, M., Maas, J.: A spatial version of the Itô-Stratonovich correction. Ann. Probab. (2011, to appear) Hairer M., Stuart A.M., Voss J.: Analysis of SPDEs arising in path sampling. II. The nonlinear case. Ann. Appl. Probab. 17(5-6), 1657–1706 (2007) Hairer, M., Voss, J.: Approximations to the stochastic Burgers equation. J. Nonl. Sci. (2011) Jona-Lasinio G., Mitter P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101(3), 409–436 (1985) Karatzas I., Shreve S.E.: Brownian motion and stochastic calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991) Kardar M., Parisi G., Zhang Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986) Lions P.-L., Souganidis P.E.: Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326(9), 1085–1092 (1998) Lyons, T., Qian, Z.: System control and rough paths. Oxford Mathematical Monographs. Oxford University Press/Oxford Science Publications, Oxford (2002) Lyons T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14(2), 215–310 (1998) Lyons, T.J., Caruana, M., Lévy, T.: Differential equations driven by rough paths. In: Lecture Notes in Mathematics, vol. 1908. Springer, Berlin, 2007. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, With an introduction concerning the Summer School by Jean Picard Nualart D., Răşcanu A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53(1), 55–81 (2002) Nualart D., Rozovskii B.: Weighted stochastic Sobolev spaces and bilinear SPDEs driven by space-time white noise. J. Funct. Anal. 149(1), 200–225 (1997) Teichmann J.: Another approach to some rough and stochastic partial differential equations. Stoch. Dyn. 11(2–3), 535–550 (2011)