Root exudate supplemented inoculant of Azospirillum brasilense Ab-V5 is more effective in enhancing rhizosphere colonization and growth of maize
Tóm tắt
This study was aimed to evaluate inoculants of Azospirillum brasilense strain Ab-V5 supplemented with root exudates (collected from maize seedlings) for improving the inoculation response of maize, by stimulation of root colonization by the bacterium. Root exudates collected from seedlings of two commercial maize genotypes were evaluated, and their effects on seeds, seedling colonization and plant development under greenhouse conditions were addressed. Compared with seeds treated with water, seeds soaked with maize root exudate extract (MREE) increased mean bacterial count by three log-unity. Plantlets inoculated with MREE-supplemented inoculant suspensions showed 0.4 log-unity higher mean counts than those inoculated with non-supplemented bacterial suspension. The plant biomass for inoculants supplemented with MREE increased by 50% and the root area and number per plant increased by 19% when compared to non-supplemented bacterial suspensions. Photosynthetic physiological responses were also observed when the MREE inoculants were used, although these effects varied according to the plant genotype and MREE source. The results demonstrate that soluble compounds exuded by maize seedlings can increase the colonization of maize plants by A. brasilense Ab-V5 and suggest a strategy to improve the effectiveness of plant–PGPB associative systems by introducing chemoattractant molecules into inoculant formulations.
Tài liệu tham khảo
Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91. https://doi.org/10.1099/00221287-74-1-77
Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352. https://doi.org/10.1371/journal.pbio.10023522016
Alexandre G (2015) Chemotaxis in Azospirillum. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham, pp 101–114. https://doi.org/10.1007/978-3-319-06542-7_6
Asiago VM, Hazebroek J, Harp T, Zhong C (2012) Effects of genetics and environment on the metabolome of commercial maize hybrids: a multisite study. J Agric Food Chem 60:11498–11508. https://doi.org/10.1021/jf303873a
Bacilio-Jiménez M, Aguilar SF, Ventura EZ, Perez EC, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277. https://doi.org/10.1023/A:1022888900465
Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431. https://doi.org/10.1007/s11104-014-2186-6
Bashan Y (1986) Enhancement of wheat root colonization and plant development by Azospirillum brasilense Cd following temporary depression of rhizosphere microflora. Appl Environ Microbiol 51:1067–1071
Bashan Y, de Bashan LE (2010) Chapter two—how the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
Bashan Y, de Bashan LE (2015) Inoculant preparation and formulations for Azospirillum spp. In: Cassán F, Okon Y, Creus C (eds) Handbook for Azospirillum. Springer, Cham, pp 469–485. https://doi.org/10.1007/978-3-319-06542-7_26.
Bashan Y, Harrison SK, Whitmoyer RE (1990) Enhanced Growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl Environ Microbiol 56:769–775
Bashan Y, Bashan LE, Prabhu SR, Hernandez JB (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x
Bashan Y, de Bashan LE, Prabhu SR (2016) Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: Singh H, Sarma B, Keswani C (eds) Agriculturally important microorganisms. Springer, Singapore, pp 15–46. https://doi.org/10.1007/978-981-10-2576-1_2
Beauregard PB (2015) Chapter One—not just sweet talkers: how roots stimulate their colonization by beneficial bacteria. Adv Bot Res 75:1–20. https://doi.org/10.1016/bs.abr.2015.07.001
Cassán DF, Díaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130. https://doi.org/10.1016/j.soilbio.2016.08.020
Cotton TEA, Pétriacq P, Cameron DD, Meselmani MA, Schwarzenbacher R, Rolfe SA, Ton J (2019) Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J 13:1647–1658. https://doi.org/10.1038/s41396-019-0375-2
do Amaral FP, Pankievicz VCS, Arisi ACM, Souza EM, Pedrosa F, Stacey G (2016) Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Mol Biol 90:689–697. https://doi.org/10.1007/s11103-016-0449-8
Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879. https://doi.org/10.1071/PP01074
Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163:500–510. https://doi.org/10.1016/j.resmic.2012.08.006
Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 326:99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x
Fukami J, Nogueira MA, Araújo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6:3. https://doi.org/10.1186/s13568-015-0171-y
Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73. https://doi.org/10.1186/s13568-018-0608-1
Gafny R, Okon Y, Kapulnik Y, Fischer M (1986) Adsorption of Azospirillum brasilense to corn roots. Soil Biol Biochem 18:69–75. https://doi.org/10.1016/0038-0717(86)90105-7
Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S, Harer J, Benfey PN, Weitz JS (2012) GiA Roots: software for the high-throughput analysis of plant root system architecture. BMC Plant Biol 12:116. https://doi.org/10.1186/1471-2229-12-116
Haichar FZ, Marol C, Berge O, Rangel-Castro J, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230. https://doi.org/10.1038/ismej.2008.80
Hoagland DR, Arnon DI (1951) The water culture method for growing plants without soil. California Agricultural Experiment Station, Davis
Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:2738. https://doi.org/10.1038/s41467-018-05122-7
Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. https://doi.org/10.1007/s11104-009-0262-0
Jha P, Panwar J, Jha PN (2018) Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. Environ Sustain 1:25–38. https://doi.org/10.1007/s42398-018-0011-5
Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728. https://doi.org/10.1038/ismej.2010.9
Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322. https://doi.org/10.1016/0038-0717(84)90025-7
Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596. https://doi.org/10.1016/j.cell.2017.04.025
Li B, Förster C, Robert CAM, Züst T, Hu L, Machado RAR, Berset JD, Handrick V, Knauer T, Hensel G, Chen W, Kumlehn J, Yang P, Keller B, Gershenzon J, Jander G, Köllner TG, Erb M (2018) Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Sci Adv 4:eaat6797. https://doi.org/10.1126/sciadv.aat6797
Luo B, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q, Ren Z, Lin H, Wu Y, Shen Y, Zhang S, Wu L, Liu D, Pan G, Rong T, Gao S (2019) Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. Plant J 97:947–969. https://doi.org/10.1111/tpj.14160
Mandimba G, Heulin T, Bally R, Guckert A, Balandreau J (1986) Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant Soil 90:129–139. https://doi.org/10.1007/BF02277392
Maresh J, Zhang J, Lynn DG (2006) The Innate immunity of maize and the dynamic chemical strategies regulating two-component signal transduction in Agrobacterium tumefaciens. ACS Chem Biol 1:165–175. https://doi.org/10.1021/cb600051w
Marsudi NDS, Glenn AR, Dilworth MJ (1999) Identification and characterization of fast- and slow-growing root nodule bacteria from South-Western Australian soils able to nodulate Acacia saligna. Soil Biol Biochem 31:1229–1238. https://doi.org/10.1016/S0038-0717(99)00032-2
Matthews A, Pierce S, Hipperson H, Raymond B (2019) Rhizobacterial community assembly patterns vary between crop species. Front Microbiol 10:581. https://doi.org/10.3389/fmicb.2019.00581
Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE, Gershenzon J, Buckler ES, Erb M, Köllner TG, Jander G (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 25:2341–2355. https://doi.org/10.1105/tpc.113.112409
Morel MA, Cagide C, Castro-Sowinski S (2016) The contribution of secondary metabolites in the success of bioformulations. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, Berlin, pp 235–250. https://doi.org/10.1007/978-81-322-2779-3_13
Mukherjee T, Kumar D, Burriss N, Xie Z, Alexandre G (2016) Azospirillum brasilense chemotaxis depends on two signaling pathways regulating distinct motility parameters. J Bacteriol 198:1764–1772. https://doi.org/10.1128/JB.00020-16
Mukherjee T, Elmas M, Vo L, Alexiades V, Hong T, Alexandre G (2019) Multiple CheY homologs control swimming reversals and transient pauses in Azospirillum brasilense. Biophys J 116:1527–1537. https://doi.org/10.1016/j.bpj.2019.03.006
Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 7:e35498. https://doi.org/10.1371/journal.pone.0035498
Niculaes C, Abramov A, Hannemann L, Frey M (2018) Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy 8:143. https://doi.org/10.3390/agronomy8080143
O’Connell KP, Gosman RM, Handelsman J (1996) Engineering the rhizosphere: expressing a bias. Trends Biothechnol 14:83–88. https://doi.org/10.1016/0167-7799(96)80928-0
O’Neal L, Akhter S, Alexandre G (2019) A PilZ-domain chemotaxis receptor mediates oxygen and wheat root sensing in Azospirillum brasilense. Front Microbiol 10:312. https://doi.org/10.3389/fmicb.2019.00312
Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates–rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166. https://doi.org/10.1007/s00253-018-9556-6
Olivares FL, Busato JG, Paula AM, Lima LS, Aguiar NO, Canellas LP (2017) Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chem Biol Technol Agric 4:30. https://doi.org/10.1186/s40538-017-0112-x
Pedreschi R, Cisneros-Zevallos L (2017) Phenolic profiles of Andean purple corn (Zea mays L.). Food Chem 100:956–963. https://doi.org/10.1016/j.foodchem.2005.11.004
Pereg L, de Bashan LE, Bashan Y (2016) Assessment of affinity and specificity of Azospirillum for plants. Plant Soil 399:389–414. https://doi.org/10.1007/s11104-015-2778-9
Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–196
Sasse J, Martinoia E, Northern T (2018) Feed Your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41. https://doi.org/10.1016/j.tplants.2017.09.003
Scharf B, Hynes M, Alexandre G (2016) Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol Biol 90:549–559. https://doi.org/10.1007/s11103-016-0432-4
Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler-Löbermann B, Malusà E (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. App Microbiol Biotech 99:4983–4996. https://doi.org/10.1007/s00253-015-6656-4