Root Growth Patterns and Morphometric Change Based on the Growth Media
Tóm tắt
Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.
Tài liệu tham khảo
Bisgrove, S.R., Lee, Y.R., Liu, B., Peters, N.T., Kropf, D.L.: The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant. Cell. 20(2), 396–410 (2008). doi:10.1105/tpc.107.056846
Buer, C.S., Masle, J., Wasteneys, G.O.: Growth conditions modulate root-wave phenotypes in Arabidopsis. Plant. Cell. Physiol. 41(10), 1164–1170 (2000)
Buer, C.S., Wasteneys, G.O., Masle, J.: Ethylene modulates root-wave responses in Arabidopsis. Plant. Physiol. 132(2), 1085–1096 (2003). doi:10.1104/pp.102.019182
Canty, A., Ripley, B.: boot: Bootstrap R (S-Plus) Functions. In: R package version 1.3–15 (2015)
Darwin, C., Darwin, F.: The Power of Movement in Plants. John Murray, London (1880)
de Mendiburu, F.: agricolae: statistical procedures for agricultural research. In: http://CRAN.R-project.org/package=agricolae, R package version 1.2-1 (2014)
Evans, M.: Touch sensitivity in plants: be aware or beware. Trends. Plant. Sci. 8(7), 312–314 (2003). doi:10.1016/S1360-1385(03)00133-X
Fox, J., Weisberg, S.: An RCompanion to applied regression, second edition. In: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion, Thousand Oaks, CA (2011)
Grabov, A., Ashley, M.K., Rigas, S., Hatzopoulos, P., Dolan, L., Vicente-Agullo, F.: Morphometric analysis of root shape. New. Phytol. 165(2), 641–651 (2005). doi:10.1111/j.1469-8137.2004.01258.x
Hothorn, T., Bretz, F., Westfall, P.: Simultaneous inference in general parametric models. Biom. J 50 (3), 346–363 (2008). doi:10.1002/bimj.200810425
Iida, H., Furuichi, T., Nakano, M., Toyota, M., Sokabe, M., Tatsumi, H.: New candidates for mechano-sensitive channels potentially involved in gravity sensing in Arabidopsis thaliana. Plant. Biol. (Stuttg). 16. Suppl. 1, 39–42 (2014). doi:10.1111/plb.12044
Kim, S.K., Chojnacka, K.: Marine algae extracts: processes, products, and applications, 2 Volume Set. vol. v. 1 Wiley (2015)
Kushwah, S., Jones, A.M., Laxmi, A.: Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant. Physiol. 156(4), 1851–1866 (2011). doi:10.1104/pp.111.175794
Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., Huala, E.: The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic. Acids. Res. 40(Database issue), D1202–1210 (2012). doi:10.1093/nar/gkr1090
Langsrud, O.: ANOVA For unbalanced data: use type II instead of type III sums of squares. Stat. Comput. 13(2), 163–167 (2003)
Lemon, J.: Plotrix: a package in the red light district of R. R-News 6(4), 8–12 (2006)
Li, H., Shen, T., Smith, M.B., Fujiwara, I., Vavylonis, D., Huang, X.: Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. Proceedings/IEEE. Int. Symp. Biomed. Imaging. 2009, 1302–1305 (2009). doi:10.1109/ISBI.2009.5193303
Manak, M.S., Paul, A. -L., Sehnke, P.C., Ferl, R.J.: Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments. Life. Support. Biosph. Sci. 8(2), 83–91 (2002)
Massa, G.D., Gilroy, S.: Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots. Adv. Space. Res. 31(10), 2195–2202 (2003a)
Massa, G.D., Gilroy, S.: Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant. J 33(3), 435–445 (2003b)
Millar, K.D., Johnson, C.M., Edelmann, R.E., Kiss, J.Z.: An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology 11(8), 787–797 (2011). doi:10.1089/ast.2011.0699
Mochizuki, S., Harada, A., Inada, S., Sugimoto-Shirasu, K., Stacey, N., Wada, T., Ishiguro, S., Okada, K., Sakai, T.: The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. Plant. Cell. 17(2), 537–547 (2005). doi:10.1105/tpc.104.028530
Nakano, M., Samejima, R., Iida, H.: Mechanosensitive channel candidate MCA2 is involved in touch-induced root responses in Arabidopsis. Front. Plant. Sci. 5, 421 (2014). doi:10.3389/fpls.2014.00421
Nakashima, J., Liao, F., Sparks, J.A., Tang, Y., Blancaflor, E.B.: The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Plant. Biol. (Stuttg). 16. Suppl. 1, 142–150 (2014). doi:10.1111/plb.12062
Okada, K., Shimura, Y.: Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250(4978), 274–276 (1990). doi:10.1126/science.250.4978.274
Oliva, M., Dunand, C.: Waving and skewing: How gravity and the surface of growth media affect root development in Arabidopsis. New. Phytol. 176(1), 37–43 (2007). doi:10.1111/j.1469-8137.2007.02184.x
Pandey, S., Monshausen, G.B., Ding, L., Assmann, S.M.: Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. Plant. J. 55(2), 311–322 (2008). doi:10.1111/j.1365-313X.2008.03506.x
Paul, A. -L., Amalfitano, C.E., Ferl, R.J.: Plant growth strategies are remodeled by spaceflight. BMC Plant. Biol. 12, 232 (2012). doi:10.1186/1471-2229-12-232
R Core Team: R: a language and environment for statistical computing. In: http://www.R-project.org/, R Foundation for Statistical Computing, Vienna, Austria (2014)
Roux, S.J.: Root waving and skewing: unexpectedly in micro-g. BMC Plant. Biol. 12, 231 (2012). doi:10.1186/1471-2229-12-231
Roy, R., Bassham, D.C.: Root growth movements: waving and skewing. Plant. Sci. 221-222, 42–47 (2014). doi:10.1016/j.plantsci.2014.01.007
RStudio: RStudio: Integrated development environment for R (version 0.98.994). In: http://www.rstudio.org/, Boston, MA (2013)
Sakai, T., Mochizuki, S., Haga, K., Uehara, Y., Suzuki, A., Harada, A., Wada, T., Ishiguro, S., Okada, K.: The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots. Plant. J 70(2), 303–314 (2012). doi:10.1111/j.1365-313X.2011.04870.x
Scherer, G.F., Pietrzyk, P.: Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station. Plant. Biol. (Stuttg). 16. Suppl. 1, 97–106 (2014). doi:10.1111/plb.12123
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012)
Sedbrook, J., Boonsirichai, K., Chen, R., Hilson, P., Pearlman, R., Rosen, E., Rutherford, R., Batiza, A., Carroll, K., Schulz, T., Masson, P.H.: Molecular genetics of root gravitropism and waving in Arabidopsis thaliana. Gravit. Space. Biol. Bull. 11(2), 71–78 (1998)
Sedbrook, J.C., Carroll, K.L., Hung, K.F., Masson, P.H., Somerville, C.R.: The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant. Cell. 14(7), 1635–1648 (2002)
Shih, H.W., Miller, N.D., Dai, C., Spalding, E.P., Monshausen, G.B.: The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24(16), 1887–1892 (2014). doi:10.1016/j.cub.2014.06.064
Smith, M.B., Li, H., Shen, T., Huang, X., Yusuf, E., Vavylonis, D.: Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton. (Hoboken) 67(11), 693–705 (2010). doi:10.1002/cm.20481
Swanson, S.J., Barker, R., Ye, Y., Gilroy, S.: Evaluating mechano-transduction and touch responses in plant roots. Methods. Mol. Biol. 1309, 143–150 (2015). doi:10.1007/978-1-4939-2697-812
Takahashi, N., Goto, N., Okada, K., Takahashi, H.: Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216(2), 203–211 (2002). doi:10.1007/s00425-002-0840-3
Thompson, M.V., Holbrook, N.M.: Root-gel interactions and the root waving behavior of Arabidopsis. Plant. Physiol. 135(3), 1822–1837 (2004). doi:10.1104/pp.104.040881
Trewavas, A., Knight, M.: Mechanical signalling, calcium and plant form. Plant. Mol. Biol. 26(5), 1329–1341 (1994)
Ulmasov, T., Murfett, J., Hagen, G., Guilfoyle, T.J.: Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant. Cell. 9(11), 1963–1971 (1997). doi:10.1105/tpc.9.11.1963
Vaughn, L.M., Masson, P.H.: A QTL study for regions contributing to Arabidopsis thaliana root skewing on tilted surfaces. G3. (Bethesda) 1(2), 105–115 (2011). doi:10.1534/g3.111.000331
Weerasinghe, R.R., Swanson, S.J., Okada, S.F., Garrett, M.B., Kim, S.Y., Stacey, G., Boucher, R.C., Gilroy, S., Jones, A.M.: Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett. 583(15), 2521–2526 (2009). doi:10.1016/j.febslet.2009.07.007
Wickham, H.: The split-apply-combine strategy for data analysis. J. Stat. Softw. 40(1), 1–29 (2011)
Wickham, H., Francois, R.: dplyr: a grammar of data manipulation. In: http://CRAN.R-project.org/package=dplyr, R package version 0.4.1 (2015)
Yamamoto, C., Sakata, Y., Taji, T., Baba, T., Tanaka, S.: Unique ethylene-regulated touch responses of Arabidopsis thaliana roots to physical hardness. J. Plant. Res. 121(5), 509–519 (2008). doi:10.1007/s10265-008-0178-4
Yuen, C.Y., Pearlman, R.S., Silo-Suh, L., Hilson, P., Carroll, K.L., Masson, P.H.: WVD2 And WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant. Physiol. 131(2), 493–506 (2003). doi:10.1104/pp.015966
Yuen, C.Y., Sedbrook, J.C., Perrin, R.M., Carroll, K.L., Masson, P.H.: Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant. Physiol. 138(2), 701–714 (2005). doi:10.1104/pp.105.059774