Room temperature synthesis of novel worm like tin oxide nanoparticles for photocatalytic degradation of organic pollutants
Tài liệu tham khảo
Holkar, 2016, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage., 182, 351, 10.1016/j.jenvman.2016.07.090
Ojeda, 2017, Polymeric templating synthesis of anatase TiO2 nanoparticles from low-cost inorganic titanium sources, ChemistrySelect, 2, 702, 10.1002/slct.201601795
Koppala, 2019, Hierarchical ZnO/Ag nanocomposites for plasmon-enhanced visible-light photocatalytic performance, Ceram. Int., 45, 15116, 10.1016/j.ceramint.2019.04.252
Haque, 2012, Preparation and photocatalytic study of nano cadmium sulphide, 406
Sivasankar, 2011, Green synthesis of CdSe nanoparticles at room temperature and its characterisation, Micro Nano Lett., 6, 144, 10.1049/mnl.2010.0201
Li, 2020, Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants, Environ. Res., 185, 10.1016/j.envres.2020.109409
Elango, 2016, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye, J. Photochem. Photobiol. B Biol., 155, 34, 10.1016/j.jphotobiol.2015.12.010
Kim, 2016, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation, Mater. Res. Bull., 74, 85, 10.1016/j.materresbull.2015.10.024
Kar, 2015, Influence of size and shape on the photocatalytic properties of SnO2 nanocrystals, ChemPhysChem, 16, 1017, 10.1002/cphc.201402864
Sun, 2014, Self-doping for visible light photocatalytic purposes: construction of SiO2/SnO2/SnO2:Sn2+ nanostructures with tunable optical and photocatalytic performance, RSC Adv., 4, 30820, 10.1039/C4RA04356A
Y. Huang, Z. Guo, H. Liu, S. Zhang, P. Wang, J. Lu Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst, 1903490 (2019) 1–9. DOI:10.1002/adfm.201903490.
Ye, 2019, An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants, Appl. Catal. B Environ., 259, 10.1016/j.apcatb.2019.118085
Yang, 2017, Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity, Appl. Surf. Sci., 420, 399, 10.1016/j.apsusc.2017.05.176
Liu, 2012, Effect of oxygen vacancies on photocatalytic efficiency of TiO2 nanotubes aggregation, Bull. Korean Chem. Soc., 33, 2255, 10.5012/bkcs.2012.33.7.2255
Zhang, 2020, Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites, J. Photochem. Photobiol. A Chem., 392, 10.1016/j.jphotochem.2019.112156
Zeng, 2020, Increasing oxygen vacancies at room temperature in SnO2 for enhancing ethanol gas sensing, Mater. Sci. Semicond. Process., 111, 10.1016/j.mssp.2020.104962
Jing, 2005, Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles, Sci. China Ser. B Chem., 48, 25, 10.1007/BF02990909
Deepa, 2017, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films, Ceram. Int., 43, 17128, 10.1016/j.ceramint.2017.09.134
Akbar, 2019, Defect ferromagnetism in SnO2:Zn2+ hierarchical nanostructures: correlation between structural, electronic and magnetic properties, RSC Adv., 9, 4082, 10.1039/C9RA00455F
Kar, 2011, Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles, J. Phys. Chem. C, 115, 118, 10.1021/jp110313b
Amulya, 2020, Sonochemical synthesis of NiFe2O4 nanoparticles: characterization and their photocatalytic and electrochemical applications, Appl. Surf. Sci. Adv., 1, 10.1016/j.apsadv.2020.100023
Preethi, 2019, Cubic and orthorhombic Cd2SnO4 microcrystals: molten salt synthesis, phase evolution and dye degradation studies, Mater. Res. Express., 6, 10.1088/2053-1591/ab406f
Garcia, 2016, Room-temperature synthesis of mesoporous Sn/SnO2 composite as anode for sodium-ion batteries, Eur. J. Inorg. Chem., 2016, 1950, 10.1002/ejic.201501441
Sengar, 2011, Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy, Appl. Phys. Lett., 98, 2012, 10.1063/1.3590272
Supothina, 2000, Characterization of SnO2 thin films grown from aqueous solutions, Thin Solid Films, 371, 1, 10.1016/S0040-6090(00)00989-5
Dutta, 2012, Influence of confinement regimes on magnetic property of pristine SnO2 quantum dots, J. Mater. Chem., 22, 24545, 10.1039/c2jm35274e
Bhatnagar, 2016, Structural and photoluminescence properties of tin oxide and tin oxide: C core–shell and alloy nanoparticles synthesised using gas phase technique, AIP Adv., 6, 10.1063/1.4964313
Tauc, 1966, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi, 15, 627, 10.1002/pssb.19660150224
Džimbeg-Malčić, 2012, Kubelka-Munk theory in describing optical properties of paper (II), Teh. Vjesn., 19, 191
Makuła, 2018, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra, J. Phys. Chem. Lett., 9, 6814, 10.1021/acs.jpclett.8b02892
Shifu, 2013, Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced photocatalytic activity, J. Chem. Soc. Dalt. Trans., 42, 10759, 10.1039/c3dt50699a
Zhou, 2014, All-solid-state Z-scheme photocatalytic systems, Adv. Mater., 26, 4920, 10.1002/adma.201400288
