Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite

RSC Advances - Tập 5 Số 4 - Trang 3016-3022
Dongzhi Zhang1,2,3,4, Aiming Liu1,2,3,4, Hongyan Chang1,2,3,4, Bokai Xia1,2,3,4
1China University of Petroleum (East China)
2College of Information and Control Engineering
3People's Republic of China
4Qingdao 266580

Tóm tắt

In this paper, we demonstrated a room-temperature acetone gas sensor based on a tin dioxide (SnO2)-reduced graphene oxide (RGO) hybrid composite film.

Từ khóa


Tài liệu tham khảo

Lee, 2014, Sens. Actuators, B, 197, 300, 10.1016/j.snb.2014.02.043

Cheng, 2014, Sens. Actuators, B, 200, 181, 10.1016/j.snb.2014.04.063

Jia, 2014, J. Hazard. Mater., 276, 262, 10.1016/j.jhazmat.2014.05.044

Xiao, 2014, Sens. Actuators, B, 199, 210, 10.1016/j.snb.2014.04.015

Wang, 2014, IEEE Sens. J., 14, 1117, 10.1109/JSEN.2013.2293705

Do, 2013, Sens. Actuators, B, 185, 39, 10.1016/j.snb.2013.04.080

Nasution, 2013, Sens. Actuators, B, 177, 522, 10.1016/j.snb.2012.11.063

Khandekar, 2014, Ceram. Int., 40, 447, 10.1016/j.ceramint.2013.06.021

Jiao, 2012, Trans. Nonferrous Met. Soc. China, 22, 1127, 10.1016/S1003-6326(11)61294-6

Li, 2014, Mater. Lett., 132, 338, 10.1016/j.matlet.2014.06.112

Bamsaoud, 2011, Sens. Actuators, B, 153, 382, 10.1016/j.snb.2010.11.003

Zhang, 2013, Vacuum, 95, 30, 10.1016/j.vacuum.2013.02.005

Li, 2013, Mater. Lett., 100, 119, 10.1016/j.matlet.2013.02.117

Sun, 2014, Mater. Lett., 120, 287, 10.1016/j.matlet.2014.01.114

Ding, 2013, J. Am. Chem. Soc., 135, 9015, 10.1021/ja402887v

Rentenberger, 2011, Sens. Actuators, B, 160, 22, 10.1016/j.snb.2011.07.004

Ghasempour, 2010, Int. J. Nanomanuf., 5, 268, 10.1504/IJNM.2010.033869

Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849

Li, 2009, Science, 324, 1312, 10.1126/science.1171245

Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y

Park, 2009, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Schedin, 2007, Nat. Mater., 6, 652, 10.1038/nmat1967

Lu, 2009, Nanotechnology, 20, 445502, 10.1088/0957-4484/20/44/445502

Pearce, 2011, Sens. Actuators, B, 155, 451, 10.1016/j.snb.2010.12.046

Chung, 2012, Sens. Actuators, B, 166–167, 172, 10.1016/j.snb.2012.02.036

Yoon, 2011, Sens. Actuators, B, 157, 310, 10.1016/j.snb.2011.03.035

Ghosh, 2009, J. Exp. Nanosci., 4, 313, 10.1080/17458080903115379

Huang, 2012, Mater. Lett., 83, 76, 10.1016/j.matlet.2012.05.074

Liu, 2013, Sens. Actuators, B, 188, 469, 10.1016/j.snb.2013.06.065

Choi, 2014, ACS Appl. Mater. Interfaces, 6, 9061, 10.1021/am501394r

Song, 2011, J. Mater. Chem., 21, 5972, 10.1039/c0jm04331a

Mali, 2011, Appl. Surf. Sci., 257, 9737, 10.1016/j.apsusc.2011.05.119

Wang, 2012, Sens. Actuators, B, 171–172, 658, 10.1016/j.snb.2012.05.050

Li, 2012, Mater. Sci. Eng., C, 32, 817, 10.1016/j.msec.2012.01.032

Liu, 2014, J. Mater. Chem. A, 2, 2555, 10.1039/C3TA14445C

Do, 2013, Sens. Actuators, B, 185, 39, 10.1016/j.snb.2013.04.080

Khun, 2009, J. Appl. Phys., 106, 124509, 10.1063/1.3273323

Shao, 2014, Sens. Actuators, B, 204, 666, 10.1016/j.snb.2014.08.003

Guirado-Lopez, 2007, J. Phys. Chem. C, 111, 57, 10.1021/jp064651e

Mazeina, 2010, Sens. Actuators, B, 151, 114, 10.1016/j.snb.2010.09.038

Russo, 2012, Angew. Chem., Int. Ed., 51, 11053, 10.1002/anie.201204373

Lin, 2012, Sens. Actuators, B, 173, 139, 10.1016/j.snb.2012.06.055

Guo, 2010, Nano Lett., 10, 4975, 10.1021/nl103079j

Tran, 2014, Sens. Actuators, B, 194, 45, 10.1016/j.snb.2013.12.062

Hsu, 2013, Sens. Actuators, B, 182, 190, 10.1016/j.snb.2013.03.002

Kim, 2014, Sens. Actuators, B, 192, 607, 10.1016/j.snb.2013.11.005

Chang, 2008, IEEE Trans. Nanotechnol., 7, 754, 10.1109/TNANO.2008.2005917

Luo, 2014, New J. Chem., 38, 84, 10.1039/C3NJ00776F