Room temperature crystallography of human acetylcholinesterase bound to a substrate analogue 4K-TMA: Towards a neutron structure

Current Research in Structural Biology - Tập 3 - Trang 206-215 - 2021
Oksana Gerlits1, Matthew P. Blakeley2, David A. Keen3, Zoran Radić4, Andrey Kovalevsky5
1Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, 37303, USA
2Large Scale Structures Group, Institut Laue–Langevin, 38000, Grenoble, France
3ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0751, USA
5Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Tài liệu tham khảo

Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925 Afonine, 2012, Towards automated crystallographic structure refinement with phenix, refine. Acta Cryst., D68, 352 Allgardsson, 2016, Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6, Proc. Natl. Acad. Sci. Unit. States Am., 113, 5514, 10.1073/pnas.1523362113 Arzt, 1999, LSCALE - the new normalization, scaling and absorption correction program in the Daresbury Laue software suite, J. Appl. Crystallogr., 32, 554, 10.1107/S0021889898015350 Bester, 2018, Structural insights of stereospecific inhibition of human acetylcholinesterase by VX and subsequent reactivation by HI-6, Chem. Res. Toxicol., 31, 1405, 10.1021/acs.chemrestox.8b00294 Blakeley, 2018, Neutron macromolecular crystallography, Emerg. Topics Life Sci., 2, 39, 10.1042/ETLS20170083 Blakeley, 2010, Neutron macromolecular crystallography with LADI-III, Acta Crystallogr. D, 66, 1198, 10.1107/S0907444910019797 Bourne, 2006, Substrate and product trafficking through the active site center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding, J. Biol. Chem., 281, 29256, 10.1074/jbc.M603018200 Campbell, 1995, LAUEGEN, an X-Windows-based program for the processing of Laue diffraction data, J. Appl. Crystallogr., 28, 228, 10.1107/S002188989400991X Campbell, 1998, LAUEGEN version 6.0 and INTLDM, J. Appl. Crystallogr., 31, 496, 10.1107/S0021889897016683 Chen, 2010, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D, 66, 12, 10.1107/S0907444909042073 Cheung, 2012, Height, J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands, J. Med. Chem., 55, 10282, 10.1021/jm300871x Coates, 2018, A suite-level review of the neutron single-crystal diffraction instruments at Oak Ridge National Laboratory, Rev. Sci. Instrum., 89, 10.1063/1.5030896 Coates, 2017, Ewald: an extended wide-angle Laue diffractometer for the second target station of the Spallation Neutron Source, J. Appl. Crystallogr., 50, 1174, 10.1107/S1600576717010032 Cochran, 2011, Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging, J. Biol. Chem., 286, 29718, 10.1074/jbc.M111.264739 Colletier, 2006, Structural insights into substrate traffic and inhibition in acetylcholinesterase, EMBO J., 25, 2746, 10.1038/sj.emboj.7601175 Colletier, 2008, Shoot-and-trap: use of specific X-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography, Proc. Natl. Acad. Sci. U.S.A., 105, 11742, 10.1073/pnas.0804828105 Dougherty, 2013, The cation-π interaction, Acc. Chem. Res., 46, 885, 10.1021/ar300265y Emsley, 2010, Features and development of coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Franklin, 2016, Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface, Prot. Struct. Funct. Bioinform., 84, 1246, 10.1002/prot.25073 Fraser, 2011, Accessing protein conformational ensembles using room-temperature X-ray crystallography, Proc. Natl. Acad. Sci. U.S.A., 108, 16247, 10.1073/pnas.1111325108 Garman, 2010, Radiation damage in macromolecular crystallography: what is it and why should we care?, Acta Crystallogr. D, 66, 339, 10.1107/S0907444910008656 Gerlits, 2017, Room temperature neutron crystallography of drug resistant HIV-1 protease uncovers limitations of X-ray structural analysis at 100K, J. Med. Chem., 60, 2018, 10.1021/acs.jmedchem.6b01767 Gerlits, 2019, Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase, J. Biol. Chem., 294, 10607, 10.1074/jbc.RA119.008725 Gerlits, 2019, A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies, Chem. Biol. Interact., 309, 10.1016/j.cbi.2019.06.011 Gorecki, 2020, Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase, J. Biol. Chem., 295, 4079, 10.1074/jbc.RA119.012400 Keedy, 2014, Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR, Structure, 22, 899, 10.1016/j.str.2014.04.016 Kneller, 2020, Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography, Nat. Commun., 11, 3202, 10.1038/s41467-020-16954-7 Kovalevsky, 2018, ‘To be or not to be’ protonated: atomic details of human carbonic anhydrase-clinical drug complexes by neutron crystallography and simulation, Structure, 26, 383, 10.1016/j.str.2018.01.006 Liebschner, 2019, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix, Acta Crystallogr., D75, 861 Marko, 2020, Neutron macromolecular crystallography at the European spallation source, Methods Enzymol., 634, 125, 10.1016/bs.mie.2020.01.005 McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206 Meilleur, 2020, IMAGINE: the neutron protein crystallography beamline at the high flux isotope reactor, Methods Enzymol., 634, 69, 10.1016/bs.mie.2019.11.016 Meilleur, 2018, The neutron macromolecular crystallography instruments at Oak Ridge National Laboratory: advances, challenges, and opportunities, Crystals, 8, 388, 10.3390/cryst8100388 Meilleur, 2013, The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography, Acta Crystallogr., D69, 2157 Minor, 2006, HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes, Acta Crystallogr. D, 62, 859, 10.1107/S0907444906019949 Nicolet, 2003, Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products, J. Biol. Chem., 278, 41141, 10.1074/jbc.M210241200 Niimura, 2011, 250 Niimura, 2016, Neutron diffraction in studies of protein dynamics and functions, Application of, Encycl. Analyt. Chem., 1 O'Dell, 2016, Neutron protein crystallography: a complementary tool for locating hydrogens in proteins, Arch. Biochem. Biophys., 602, 48, 10.1016/j.abb.2015.11.033 Otten, 2018, Rescue of conformational dynamics in enzyme catalysis by directed evolution, Nat. Commun., 9, 1, 10.1038/s41467-018-03562-9 Plevin, 2010, Direct detection of CH/π in teractions in proteins, Nat. Chem., 2, 466, 10.1038/nchem.650 Quinn, 1987, Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev., 87, 955, 10.1021/cr00081a005 Tormos, 2010, Accumulation of tetrahedral intermediates in cholinesterase catalysis: a secondary isotope effect study, J. Am. Chem. Soc., 132, 17751, 10.1021/ja104496q Weiss, 2001, Global indicators of X-ray data quality, J. Appl. Crystallogr., 34, 130, 10.1107/S0021889800018227 Winn, 2011, Overview of the CCP4 suite and current developments, Acta Crystallogr. D, 67, 235, 10.1107/S0907444910045749 2019, wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic Acids Res., 47, D520, 10.1093/nar/gky949