Room temperature crystallography of human acetylcholinesterase bound to a substrate analogue 4K-TMA: Towards a neutron structure
Tài liệu tham khảo
Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925
Afonine, 2012, Towards automated crystallographic structure refinement with phenix, refine. Acta Cryst., D68, 352
Allgardsson, 2016, Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6, Proc. Natl. Acad. Sci. Unit. States Am., 113, 5514, 10.1073/pnas.1523362113
Arzt, 1999, LSCALE - the new normalization, scaling and absorption correction program in the Daresbury Laue software suite, J. Appl. Crystallogr., 32, 554, 10.1107/S0021889898015350
Bester, 2018, Structural insights of stereospecific inhibition of human acetylcholinesterase by VX and subsequent reactivation by HI-6, Chem. Res. Toxicol., 31, 1405, 10.1021/acs.chemrestox.8b00294
Blakeley, 2018, Neutron macromolecular crystallography, Emerg. Topics Life Sci., 2, 39, 10.1042/ETLS20170083
Blakeley, 2010, Neutron macromolecular crystallography with LADI-III, Acta Crystallogr. D, 66, 1198, 10.1107/S0907444910019797
Bourne, 2006, Substrate and product trafficking through the active site center gorge of acetylcholinesterase analyzed by crystallography and equilibrium binding, J. Biol. Chem., 281, 29256, 10.1074/jbc.M603018200
Campbell, 1995, LAUEGEN, an X-Windows-based program for the processing of Laue diffraction data, J. Appl. Crystallogr., 28, 228, 10.1107/S002188989400991X
Campbell, 1998, LAUEGEN version 6.0 and INTLDM, J. Appl. Crystallogr., 31, 496, 10.1107/S0021889897016683
Chen, 2010, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D, 66, 12, 10.1107/S0907444909042073
Cheung, 2012, Height, J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands, J. Med. Chem., 55, 10282, 10.1021/jm300871x
Coates, 2018, A suite-level review of the neutron single-crystal diffraction instruments at Oak Ridge National Laboratory, Rev. Sci. Instrum., 89, 10.1063/1.5030896
Coates, 2017, Ewald: an extended wide-angle Laue diffractometer for the second target station of the Spallation Neutron Source, J. Appl. Crystallogr., 50, 1174, 10.1107/S1600576717010032
Cochran, 2011, Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging, J. Biol. Chem., 286, 29718, 10.1074/jbc.M111.264739
Colletier, 2006, Structural insights into substrate traffic and inhibition in acetylcholinesterase, EMBO J., 25, 2746, 10.1038/sj.emboj.7601175
Colletier, 2008, Shoot-and-trap: use of specific X-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography, Proc. Natl. Acad. Sci. U.S.A., 105, 11742, 10.1073/pnas.0804828105
Dougherty, 2013, The cation-π interaction, Acc. Chem. Res., 46, 885, 10.1021/ar300265y
Emsley, 2010, Features and development of coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493
Franklin, 2016, Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface, Prot. Struct. Funct. Bioinform., 84, 1246, 10.1002/prot.25073
Fraser, 2011, Accessing protein conformational ensembles using room-temperature X-ray crystallography, Proc. Natl. Acad. Sci. U.S.A., 108, 16247, 10.1073/pnas.1111325108
Garman, 2010, Radiation damage in macromolecular crystallography: what is it and why should we care?, Acta Crystallogr. D, 66, 339, 10.1107/S0907444910008656
Gerlits, 2017, Room temperature neutron crystallography of drug resistant HIV-1 protease uncovers limitations of X-ray structural analysis at 100K, J. Med. Chem., 60, 2018, 10.1021/acs.jmedchem.6b01767
Gerlits, 2019, Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase, J. Biol. Chem., 294, 10607, 10.1074/jbc.RA119.008725
Gerlits, 2019, A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies, Chem. Biol. Interact., 309, 10.1016/j.cbi.2019.06.011
Gorecki, 2020, Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase, J. Biol. Chem., 295, 4079, 10.1074/jbc.RA119.012400
Keedy, 2014, Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR, Structure, 22, 899, 10.1016/j.str.2014.04.016
Kneller, 2020, Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography, Nat. Commun., 11, 3202, 10.1038/s41467-020-16954-7
Kovalevsky, 2018, ‘To be or not to be’ protonated: atomic details of human carbonic anhydrase-clinical drug complexes by neutron crystallography and simulation, Structure, 26, 383, 10.1016/j.str.2018.01.006
Liebschner, 2019, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix, Acta Crystallogr., D75, 861
Marko, 2020, Neutron macromolecular crystallography at the European spallation source, Methods Enzymol., 634, 125, 10.1016/bs.mie.2020.01.005
McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206
Meilleur, 2020, IMAGINE: the neutron protein crystallography beamline at the high flux isotope reactor, Methods Enzymol., 634, 69, 10.1016/bs.mie.2019.11.016
Meilleur, 2018, The neutron macromolecular crystallography instruments at Oak Ridge National Laboratory: advances, challenges, and opportunities, Crystals, 8, 388, 10.3390/cryst8100388
Meilleur, 2013, The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography, Acta Crystallogr., D69, 2157
Minor, 2006, HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes, Acta Crystallogr. D, 62, 859, 10.1107/S0907444906019949
Nicolet, 2003, Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products, J. Biol. Chem., 278, 41141, 10.1074/jbc.M210241200
Niimura, 2011, 250
Niimura, 2016, Neutron diffraction in studies of protein dynamics and functions, Application of, Encycl. Analyt. Chem., 1
O'Dell, 2016, Neutron protein crystallography: a complementary tool for locating hydrogens in proteins, Arch. Biochem. Biophys., 602, 48, 10.1016/j.abb.2015.11.033
Otten, 2018, Rescue of conformational dynamics in enzyme catalysis by directed evolution, Nat. Commun., 9, 1, 10.1038/s41467-018-03562-9
Plevin, 2010, Direct detection of CH/π in teractions in proteins, Nat. Chem., 2, 466, 10.1038/nchem.650
Quinn, 1987, Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev., 87, 955, 10.1021/cr00081a005
Tormos, 2010, Accumulation of tetrahedral intermediates in cholinesterase catalysis: a secondary isotope effect study, J. Am. Chem. Soc., 132, 17751, 10.1021/ja104496q
Weiss, 2001, Global indicators of X-ray data quality, J. Appl. Crystallogr., 34, 130, 10.1107/S0021889800018227
Winn, 2011, Overview of the CCP4 suite and current developments, Acta Crystallogr. D, 67, 235, 10.1107/S0907444910045749
2019, wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic Acids Res., 47, D520, 10.1093/nar/gky949
