Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review

Poojan Modi1, Kondo‐François Aguey‐Zinsou1
1MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia

Tóm tắt

Hydrogen has been long known to provide a solution toward clean energy systems. With this notion, many efforts have been made to find new ways of storing hydrogen. As a result, decades of studies has led to a wide range of hydrides that can store hydrogen in a solid form. Applications of these solid-state hydrides are well-suited to stationary applications. However, the main challenge arises in making the selection of the Metal Hydrides (MH) that are best suited to meet application requirements. Herein, we discuss the current state-of-art in controlling the properties of room temperature (RT) hydrides suitable for stationary application and their long term behavior in addition to initial activation, their limitations and emerging trends to design better storage materials. The hydrogen storage properties and synthesis methods to alter the properties of these MH are discussed including the emerging approach of high-entropy alloys. In addition, the integration of intermetallic hydrides in vessels, their operation with fuel cells and their use as thermal storage is reviewed.

Từ khóa


Tài liệu tham khảo

Abd.Khalim Khafidz, 2016, The kinetics of lightweight solid-state hydrogen storage materials: a review., Int. J. Hydrogen Energy, 41, 13131, 10.1016/j.ijhydene.2016.05.169

Abdin, 2018, One-dimensional metal-hydride tank model and simulation in Matlab–Simulink., Int. J. Hydrogen Energy, 43, 5048, 10.1016/j.ijhydene.2018.01.100

Abe, 2007, Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing., J. Alloys Compds., 200, 10.1016/j.jallcom.2006.12.063

Afzal, 2017, Heat transfer techniques in metal hydride hydrogen storage: a review., Int. J. Hydrogen Energy, 42, 30661, 10.1016/j.ijhydene.2017.10.166

Akiba, 1998, Hydrogen absorption by Laves phase related BCC solid solution., Intermetallics, 6, 461, 10.1016/S0966-9795(97)00088-5

Ares, 2004, Influence of thermal annealing on the hydrogenation properties of mechanically milled AB5-type alloys., Mat. Sci. Eng. B Solid, 108, 76, 10.1016/j.mseb.2003.10.083

Askri, 2009, Optimization of hydrogen storage in metal-hydride tanks., Int. J. Hydrogen Energy, 34, 897, 10.1016/j.ijhydene.2008.11.021

Azeem, 2012, Investigation of thermal conductivity enhancement in bakelite–graphite particulate filled polymeric composite., Int. J. Eng. Sci., 52, 30, 10.1016/j.ijengsci.2011.12.002

Balakrishnan, 2020, Destabilised calcium hydride as a promising high-temperature thermal battery., J. Phys. Chem. C, 124, 17512, 10.1021/acs.jpcc.0c04754

Begeal, 1978, Hydrogen and deuterium permeation in copper alloys, copper–gold brazing alloys, gold, and the in situ growth of stable oxide permeation barriers., J. Vac. Sci. Technol., 15, 1146, 10.1116/1.569527

Bérubé, 2007, Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review., Int. J. Energy Res., 31, 637, 10.1002/er.1284

Bird, 2020, Thermal properties of thermochemical heat storage materials., Phys. Chem. Chem. Phys., 22, 4617, 10.1039/C9CP05940G

Birnbaum, 2003, Hydrogen effects on deformation and fracture: science and sociology., MRS Bull., 28, 479, 10.1557/mrs2003.143

Birnbaum, 1987, On the mechanisms of hydrogen related fracture in metals, Environment Sensitive Fracture of Metals and Alloys, 105

Bloch, 1995, The temperature-dependent changes of the kinetics and morphology of hydride formation in zirconium., J. Alloys Compds., 216, 187, 10.1016/0925-8388(94)01270-R

Bloch, 1997, Kinetics and mechanisms of metal hydrides formation—a review., J. Alloys Compds., 25, 529, 10.1016/S0925-8388(96)03070-8

Bloch, 1984, The topochemistry of hydride formation in rare earth metals., J. Less Common Met., 102, 311, 10.1016/0022-5088(84)90326-6

Borzone, 2014, Stability of LaNi5–xSnx cycled in hydrogen., Int. J. Hydrogen Energy, 39, 8791, 10.1016/j.ijhydene.2013.12.031

Bououdina, 1998, The investigation of the Zr1–yTiy(Cr1–xNix)2–H2 system 0.0≤y≤1.0 and 0.0≤x≤1.0 Phase composition analysis and thermodynamic properties., J. Alloys Compds., 281, 290, 10.1016/S0925-8388(98)00792-0

Bououdina, 2006, Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties., Int. J. Hydrogen Energy, 31, 177, 10.1016/j.ijhydene.2005.04.049

Bowman, 1995, The effect of tin on the degradation of LaNi5–ySny metal hydrides during thermal cycling., J. Alloys Compds., 217, 185, 10.1016/0925-8388(94)01337-3

Broom, 2011, Hydrogen Storage Materials: The Characterisation of Their Storage Properties., 10.1007/978-0-85729-221-6

Buchner, 1982, The daimler-benz hydride vehicle project., Int. J. Hydrogen Energy, 7, 259, 10.1016/0360-3199(82)90089-1

Chen, 2013, Development of Ti–Cr–Mn–Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application., Int. J. Hydrogen Energy, 38, 12803, 10.1016/j.ijhydene.2013.07.073

Cho, 2007, Hydrogen absorption–desorption properties of Ti0.32Cr0.43V0.25 alloy., J. Alloys Compds., 430, 136, 10.1016/j.jallcom.2006.04.068

Choi, 2010, Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage., Electrochem. Commun., 12, 378, 10.1016/j.elecom.2009.12.039

Corgnale, 2014, Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants., Renew. Sustain. Energy Rev., 38, 821, 10.1016/j.rser.2014.07.049

Corgnale, 2013, Metal hydride bed system model for renewable source driven Regenerative Fuel Cell., J. Alloys Compds., 580, S406, 10.1016/j.jallcom.2013.03.010

Corré, 1999, Effects of mechanical grinding on the hydrogen storage and electrochemical properties of LaNi5., J. Alloys Compds., 292, 166, 10.1016/S0925-8388(99)00084-5

Crivello, 2003, Electronic properties of lani4.75sn0.25, lani4.5m0.5 (m= si, ge, sn), lani4.5sn0.5h5., J. Alloys Compds., 356, 151, 10.1016/S0925-8388(02)01224-0

Curtis, 1963, Thermodynamic properties of calcium hydride1., J. Phys. Chem., 67, 1061, 10.1021/j100799a027

Darras, 2012, PV output power fluctuations smoothing: the MYRTE platform experience., Int. J. Hydrogen Energy, 37, 14015, 10.1016/j.ijhydene.2012.07.083

Davids, 2011, Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium., Int. J. Hydrogen Energy, 36, 9743, 10.1016/j.ijhydene.2011.05.036

Delhomme, 2013, Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank., Int. J. Hydrogen Energy, 38, 4740, 10.1016/j.ijhydene.2013.01.140

d’Entremont, 2017, Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron – sodium alanate) for concentrating solar power plants., Int. J. Hydrogen Energy, 42, 22518, 10.1016/j.ijhydene.2017.04.231

Dhaou, 2007, Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds., Int. J. Hydrogen Energy, 32, 576, 10.1016/j.ijhydene.2006.07.001

Dhaou, 2010, Experimental study of a metal hydride vessel based on a finned spiral heat exchanger., Int. J. Hydrogen Energy, 35, 1674, 10.1016/j.ijhydene.2009.11.094

dos Santos, 2003, Structural and hydrogenation properties of an 80wt%TiCr1.1V0.9–20wt%LaNi5 composite material., Int. J. Hydrogen Energy, 28, 1237, 10.1016/S0360-3199(03)00006-5

Edalati, 2013, High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure., Int. J. Hydrogen Energy, 38, 4622, 10.1016/j.ijhydene.2013.01.185

Edalati, 2014, Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences., Int. J. Hydrogen Energy, 39, 15589, 10.1016/j.ijhydene.2014.07.124

Edalati, , Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics., Scr. Mater., 124, 108, 10.1016/j.scriptamat.2016.07.007

Edalati, 2018, Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: investigation using ultrasonic SMAT and HPT processes., J. Alloys Compds., 737, 337, 10.1016/j.jallcom.2017.12.053

Edalati, , Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion., Int. J. Hydrogen Energy, 41, 8917, 10.1016/j.ijhydene.2016.03.146

Emami, 2015, Hydrogen storage performance of TiFe after processing by ball milling., Acta Mater., 88, 190, 10.1016/j.actamat.2014.12.052

Energy Reilly, 1970, Higher hydrides of vanadium and niobium., Inorg. Chem., 9, 1678, 10.1021/ic50089a013

Felderhoff, 2009, High temperature metal hydrides as heat storage materials for solar and related applications., Int. J. Mol. Sci., 10, 325, 10.3390/ijms10010325

Førde, 2009, Thermal integration of a metal hydride storage unit and a PEM fuel cell stack., Int. J. Hydrogen Energy, 34, 6730, 10.1016/j.ijhydene.2009.05.146

Friedlmeier, 1995, Cyclic stability of various application-relevant metal hydrides., J. Alloys Compds., 231, 880, 10.1016/0925-8388(95)01776-3

2014, MYRTE hydrogen energy storage test powers up in Corsica., Fuel Cells Bull., 2014, 10.1016/S1464-2859(14)70170-1

, Dutch partners deliver first 2 MW PEMFC plant, in China., Fuel Cells Bull., 2016, 10.1016/S1464-2859(16)30329-7

, Switzerland unveils fuel cell powered heavy truck, and first hydroelectric hydrogen station., Fuel Cells Bull., 2016, 14, 10.1016/S1464-2859(16)30367-4

, Doosan sets foot in UAV fuel cell market., Fuel Cells Bull., 2018, 10.1016/S1464-2859(18)30362-6

, Doosan starts installation of hydrogen-fueled 50 MW fuel cell power plant in South Korea., Fuel Cells Bull., 2018, 10.1016/S1464-2859(18)30270-0

Fujii, 2002, Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5., J. Alloys Compds., 33, 747, 10.1016/S0925-8388(01)01508-0

Gahleitner, 2013, Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications., Int. J. Hydrogen Energy, 38, 2039, 10.1016/j.ijhydene.2012.12.010

Gangloff, 2003, Hydrogen Assisted Cracking of High Strength Alloys.

Garrier, 2011, MgH2 intermediate scale tank tests under various experimental conditions., Int. J. Hydrogen Energy, 36, 9719, 10.1016/j.ijhydene.2011.05.017

Goodell, 1984, Stability of rechargeable hydriding alloys during extended cycling., J. Less Common Met., 99, 1, 10.1016/0022-5088(84)90330-8

Goodell, 1983, Hydriding and dehydriding rates of the LaNi5-H system., J. Less Common Met., 89, 117, 10.1016/0022-5088(83)90255-2

Gosselin, 2019, First hydrogenation enhancement in TiFe alloys for hydrogen storage doped with yttrium., Metals, 9, 10.3390/met9020242

Griessen, 1988, Heat of formation models, Hydrogen in Intermetallic Compounds I, 219, 10.1007/3540183337_13

Groll, 1993, Reaction beds for dry sorption machines., Heat Recov. Syst. CHP, 13, 341, 10.1016/0890-4332(93)90059-5

Hahne, 1998, Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigation., Int. J. Hydrogen Energy, 23, 107, 10.1016/S0360-3199(97)00020-7

Haller, 1988, Untersuchung des Wärme-und Stofftransports in Metallhydrid-Reaktionsbetten.

Haraki, 2008, Properties of hydrogen absorption by nano-structured FeTi alloys., Int. J. Mater. Res., 99, 507, 10.3139/146.101669

Hirscher, 2020, Materials for hydrogen-based energy storage – past, recent progress and future outlook., J. Alloys Compds., 827, 10.1016/j.jallcom.2019.153548

Hongo, 2015, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion., Acta Mater., 92, 46, 10.1016/j.actamat.2015.03.036

Hotta, 2007, Synthesis of Ti–Fe alloys by mechanical alloying., J. Alloys Compds., 439, 221, 10.1016/j.jallcom.2006.05.137

Huot, 2008, Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1., J. Alloys Compds., 453, 203, 10.1016/j.jallcom.2006.11.193

Hwang, 2012, Characteristic study on fuel cell/battery hybrid power system on a light electric vehicle., J. Power Sources, 207, 111, 10.1016/j.jpowsour.2012.02.008

Iba, 1995, The relation between microstructure and hydrogen absorbing property in Laves phase-solid solution multiphase alloys., J. Alloys Compds., 231, 508, 10.1016/0925-8388(95)01863-8

Iba, 1997, Hydrogen absorption and modulated structure in Ti–V–Mn alloys., J. Alloys Compds., 21, 10.1016/S0925-8388(96)03072-1

Inui, 2002, Lattice defects introduced during hydrogen absorption–desorption cycles and their effects on P–C characteristics in some intermetallic compounds., J. Alloys Compds., 117, 10.1016/S0925-8388(01)01489-X

Ipsakis, 2009, Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage., Int. J. Hydrogen Energy, 34, 7081, 10.1016/j.ijhydene.2008.06.051

2004, Basic Considerations for the Safety of Hydrogen Systems.

2012, Gas Cylinders — Compatibility of Cylinder and Valve Materials with Gas Contents — Part 1: Metallic materials.

Ivanov, 1987, Magnesium mechanical alloys for hydrogen storage., J. Less Common Met., 131, 25, 10.1016/0022-5088(87)90497-8

Jai-Young, 1983, The activation processes and hydriding kinetics of FeTi., J. Less Common Met., 89, 163, 10.1016/0022-5088(83)90262-X

Jehan, 2013, McPhy-Energy’s proposal for solid state hydrogen storage materials and systems., J. Alloys Compds., 580, S343, 10.1016/j.jallcom.2013.03.266

Jemni, 1999, Experimental and theoretical study of ametal–hydrogen reactor., Int. J. Hydrogen Energy, 24, 631, 10.1016/S0360-3199(98)00117-7

Joubert, 2002, A Structural study of the homogeneity domain of LaNi5., J. Solid State Chem., 166, 1, 10.1006/jssc.2001.9499

Joubert, 1999, Crystallographic study of LaNi5–xSnx (0.2≤x≤0.5) compounds and their hydrides., J. Alloys Compds., 29, 124, 10.1016/S0925-8388(99)00311-4

Kan, 2015, A simple and effective model for prediction of effective thermal conductivity of vacuum insulation panels., Future Cities Environ., 1, 10.1186/s40984-015-0001-z

Kao, 2010, Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys., Int. J. Hydrogen Energy, 35, 9046, 10.1016/j.ijhydene.2010.06.012

Kim, 1998, Thermal analysis of the Ca0.4Mm0.6Ni5 metal–hydride reactor., Appl. Therm. Eng., 18, 1325, 10.1016/S1359-4311(98)00007-6

Kim, 2001, Metal hydride compacts of improved thermal conductivity., Int. J. Hydrogen Energy, 26, 609, 10.1016/S0360-3199(00)00115-4

Klebanoff, 2012, Hydrogen Storage Technology: Materials and Applications.

Kojima, 2006, Development of metal hydride with high dissociation pressure., J. Alloys Compds., 419, 256, 10.1016/j.jallcom.2005.08.078

Kulshreshtha, 1993, Hydriding characteristics of palladium and platinum alloyed FeTi., J. Mater. Sci., 28, 4229, 10.1007/bf00351259

Kunce, 2013, Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS)., Int. J. Hydrogen Energy, 38, 12180, 10.1016/j.ijhydene.2013.05.071

Kuriiwa, 1999, New V-based alloys with high protium absorption and desorption capacity., J. Alloys Compds., 433, 10.1016/S0925-8388(99)00325-4

Lai, 2018, Borohydrides as solid-state hydrogen storage materials: past, current approaches and future perspectives., Gen. Chem., 4, 10.21127/yaoyigc20180017

Lai, 2015, Hydrogen storage materials for mobile and stationary applications: current state of the art., ChemSusChem, 8, 2789, 10.1002/cssc.201500231

Lai, 2018, Rational design of nanosized light elements for hydrogen storage: classes, synthesis, characterization, and properties., Adv. Mater. Technol., 3, 10.1002/admt.201700298

Lee, 1991, Microstructural correlations with the hydrogenation kinetics of FeTi1+ξ alloys., J. Alloys Compd., 177, 107, 10.1016/0925-8388(91)90061-Y

Lévesque, 2000, Hydrogen storage for fuel cell systems with stationary applications— I. Transient measurement technique for packed bed evaluation., Int. J. Hydrogen Energy, 25, 1095, 10.1016/S0360-3199(00)00023-9

Li, 2019, Ti-V-C-based alloy with a FCC Lattice Structure for Hydrogen Storage., Molecules, 24

Li, 2018, Synthesis, morphology, and hydrogen absorption properties of TiVMn and TiCrMn nanoalloys with a FCC structure., Scanning, 2018, 1, 10.1155/2018/5906473

Li, 1999, Reaction mechanism of hydriding combustion synthesis of Mg2NiH4., Intermetallics, 7, 671, 10.1016/S0966-9795(98)00082-X

Liang, , Hydrogen storage properties of the mechanically alloyed LaNi5-based materials., J. Alloys Compds., 320, 133, 10.1016/S0925-8388(01)00929-X

Liang, , Mechanical alloying and hydrogen storage properties of CaNi5-based alloys., J. Alloys Compds., 321, 146, 10.1016/S0925-8388(01)01010-6

Lias, 2016, Thermal conductivity and microstructure of aluminum foam tube produce (AFTP) using infiltration method with vacuum-gas., Imp. J. Interdiscip. Res., 1843

Liu, 1995, Properties and characteristics of fluorinated hydriding alloys., J. Alloys Compds., 231, 742, 10.1016/0925-8388(95)01711-9

Liu, 2017, Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure., Proc. Natl. Acad. Sci. U.S.A., 114, 6990, 10.1073/pnas.1704505114

Liu, 2011, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries., J. Mater. Chem., 21, 4743, 10.1039/C0JM01921F

Lototsky, 2005, Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties., J. Alloys Compds., 421, 10.1016/j.jallcom.2005.01.139

Lototskyy, 2017, The use of metal hydrides in fuel cell applications., Prog. Nat. Sci., 27, 3, 10.1016/j.pnsc.2017.01.008

Louthan, 1975, Hydrogen transport in austenitic stainless steel., Corros. Sci., 15, 565, 10.1016/0010-938X(75)90022-0

Louthan, 1975, Hydrogen diffusion and trapping in nickel., Acta Metall., 23, 745, 10.1016/0001-6160(75)90057-7

Luo, 1998, Further studies of the isotherms of LaNi5–xSnx–H for x=0–0.5., J. Alloys Compds., 267, 171, 10.1016/S0925-8388(97)00536-7

Lv, 2017, Hydrogenation improvement of TiFe by adding ZrMn2., Energy, 138, 375, 10.1016/j.energy.2017.07.072

MacDonald, 2006, A thermally coupled metal hydride hydrogen storage and fuel cell system., J. Power Sources, 161, 346, 10.1016/j.jpowsour.2006.04.018

Manickam, 2019, Future perspectives of thermal energy storage with metal hydrides., Int. J. Hydrogen Energy, 44, 7738, 10.1016/j.ijhydene.2018.12.011

Manna, 2018, Mechanical activation of air exposed TiFe + 4 wt% Zr alloy for hydrogenation by cold rolling and ball milling., Int. J. Hydrogen Energy, 43, 20795, 10.1016/j.ijhydene.2018.09.096

Martin, 1996, Absorption and desorption kinetics of hydrogen storage alloys., J. Alloys Compds., 238, 193, 10.1016/0925-8388(96)02217-7

Mazzucco, 2015, Generalized computational model for high-pressure metal hydrides with variable thermal properties., Int. J. Hydrogen Energy, 40, 11470, 10.1016/j.ijhydene.2015.03.032

Mazzucco, 2014, Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: a review., Int. J. Hydrogen Energy, 39, 17054, 10.1016/j.ijhydene.2014.08.047

Mellouli, 2007, A novel design of a heat exchanger for a metal-hydrogen reactor., Int. J. Hydrogen Energy, 32, 3501, 10.1016/j.ijhydene.2007.02.039

Mellouli, 2009, Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger., Int. J. Hydrogen Energy, 34, 9393, 10.1016/j.ijhydene.2009.09.043

Melnichuk, 2009, Optimized heat transfer fin design for a metal-hydride hydrogen storage container., Int. J. Hydrogen Energy, 34, 3417, 10.1016/j.ijhydene.2009.02.040

Miedema, 1977, Model predictions for the enthalpy of formation of transition metal alloys., Calphad, 1, 341, 10.1016/0364-5916(77)90011-6

Miller, 2002, Advanced underground vehicle power and control fuel cell mine locomotive, Proceedings of the 2002 US DOE Hydrogen Program Review NREL/CP-610-32405

Mintz, 1985, Evaluation of the kinetics and mechanisms of hybriding reactions., Prog. Solid State Chem., 16, 163, 10.1016/0079-6786(85)90004-4

Mintz, 1981, Hydrides of ternary TiFexM1–x(M=Cr, Mn, Co, Ni) intermetallics., J. Appl. Phys., 52, 463, 10.1063/1.329808

Miraglia, 2012, Hydrogen sorption properties of compounds based on BCC Ti1–xV1–yCr1+x+y alloys., J. Alloys Compds., 536, 1, 10.1016/j.jallcom.2012.05.008

Mohammadshahi, 2016, A review of mathematical modelling of metal-hydride systems for hydrogen storage applications., Int. J. Hydrogen Energy, 41, 3470, 10.1016/j.ijhydene.2015.12.079

Mori, 2005, Hydrogen storage materials for fuel cell vehicles high-pressure MH system., J. Jpn. Inst. Met., 69, 308, 10.2320/jinstmet.69.308

Nagel, 1986, Effective thermal conductivity of a metal hydride bed augmented with a copper wire matrix., J. Less Common Met., 120, 35, 10.1016/0022-5088(86)90625-9

Nasako, 1998, Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy., J. Alloys Compds., 264, 271, 10.1016/S0925-8388(97)00246-6

Nelson, 1973, Gas-Phase Hydrogen Permeation through Alpha Iron, 4130 Steel, and 304 Stainless Steel from Less than 100 C to near 600 C.

Nishimiya, 2000, Hydriding characteristics of zirconium-substituted FeTi., J. Alloys Compds., 313, 53, 10.1016/S0925-8388(00)01181-6

Okada, 2002, Ti–V–Cr b.c.c. alloys with high protium content., J. Alloys Compds., 511, 10.1016/S0925-8388(01)01647-4

Orimo, 1998, Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: a review., Intermetallics, 6, 185, 10.1016/S0966-9795(97)00064-2

Orimo, 1999, Hydriding properties of the MgNi-based systems., J. Alloys Compds., 437, 10.1016/S0925-8388(99)00327-8

Parra, 2019, A review on the role, cost and value of hydrogen energy systems for deep decarbonisation., Renew. Sustain. Energy Rev., 101, 279, 10.1016/j.rser.2018.11.010

Pasini, 2013, Metal hydride material requirements for automotive hydrogen storage systems., Int. J. Hydrogen Energy, 38, 9755, 10.1016/j.ijhydene.2012.08.112

Pelay, 2017, Thermal energy storage systems for concentrated solar power plants., Renew. Sustain. Energy Rev., 79, 82, 10.1016/j.rser.2017.03.139

Pickering, 2018, Induction melted AB2-type metal hydrides for hydrogen storage and compression applications., Mater. Today Proc., 5, 10470, 10.1016/j.matpr.2017.12.378

Poupin, 2020, An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage., Sustain. Energy Fuels, 4, 285, 10.1039/C9SE00538B

Qin, 2008, Pulverization, expansion of La0. 6Y0. 4Ni4. 8Mn0. 2 during hydrogen absorption–desorption cycles and their influences in thin-wall reactors., Int. J. Hydrogen Energy, 33, 709, 10.1016/j.ijhydene.2007.10.029

Quijano, 2009, Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2, and HfH2: a first-principles study., Phys. Rev. B, 80, 10.1103/PhysRevB.80.184103

Reilly, 1974, Formation and properties of iron titanium hydride., Inorg. Chem., 13, 218, 10.1021/ic50131a042

Rizzi, 2015, Integration of a PEM fuel cell with a metal hydride tank for stationary applications., J. Alloys Compds., 645, S338, 10.1016/j.jallcom.2014.12.145

Rudman, 1983, Hydriding and dehydriding kinetics., J. Less Common Met., 89, 93, 10.1016/0022-5088(83)90253-9

Rusman, 2016, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications., Int. J. Hydrogen Energy, 41, 12108, 10.1016/j.ijhydene.2016.05.244

Sahlberg, 2016, Superior hydrogen storage in high entropy alloys., Sci. Rep., 6, 10.1038/srep36770

Saita, 2007, Hydriding combustion synthesis of TiFe., J. Alloys Compds., 195, 10.1016/j.jallcom.2007.02.150

Sakintuna, 2007, Metal hydride materials for solid hydrogen storage: a review., Int. J. Hydrogen Energy, 32, 1121, 10.1016/j.ijhydene.2006.11.022

Sandrock, 1997, State-of-the-Art Review of Hydrogen Storage in Reversible Metal Hydrides for Military Fuel Cell Applications.

Sandrock, 1999, A panoramic overview of hydrogen storage alloys from a gas reaction point of view., J. Alloys Compds., 877, 10.1016/S0925-8388(99)00384-9

Sandrock, 1989, On the disproportionation of intermetallic hydrides., Z. Phys. Chem., 164, 1285, 10.1524/zpch.1989.164.Part_2.1285

Santos, 2004, Mechanical and reactive milling of a TiCrV BCC solid solution., J. Metastab. Nanocryst. Mater., 291

Satya Sekhar, 2015, Performance analysis of cylindrical metal hydride beds with various heat exchange options., J. Alloys Compds., 645, S89, 10.1016/j.jallcom.2014.12.272

Schlapbach, 1983, The activation of FeTi for hydrogen absorption., Appl. Phys. A, 32, 169, 10.1007/bf00820257

Schlapbach, 1980, Surface effects and the formation of metal hydrides., J. Less Common Met., 73, 145, 10.1016/0022-5088(80)90354-9

Schober, 1981, The activation of FeTi for hydrogen storage: a different view., Scr. Metall., 15, 913, 10.1016/0036-9748(81)90277-5

Schoenung, 2010, ”<Task-18-Final-Report-Phase-2.pdf>”.

Selvaraj, 2018, Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor., Int. J. Hydrogen Energy, 43, 2881, 10.1016/j.ijhydene.2017.12.159

Seo, 2003, Hydrogen storage properties of vanadium-based b.c.c. solid solution metal hydrides., J. Alloys Compd., 348, 252, 10.1016/S0925-8388(02)00831-9

Shafiee, 2016, Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems – A review., Int. J. Hydrogen Energy, 41, 9462, 10.1016/j.ijhydene.2016.03.133

Shen, 2005, On the cyclic hydrogenation stability of an Lm(NiAl)5-based alloy with different hydrogen loadings., J. Alloys Compd., 392, 187, 10.1016/j.jallcom.2004.09.015

Shen, 2015, Cyclic hydrogenation stability of γ-hydrides for Ti25V35Cr40 alloys doped with carbon., J. Alloys Compd., 648, 534, 10.1016/j.jallcom.2015.07.021

Sheppard, 2016, Metal hydrides for concentrating solar thermal power energy storage., Appl. Phys. A, 122, 10.1007/s00339-016-9825-0

Sheppard, 2019, Methods for accurate high-temperature Sieverts-type hydrogen measurements of metal hydrides., J. Alloys Compd., 787, 1225, 10.1016/j.jallcom.2019.02.067

Shibuya, 2008, Hydrogenation properties and microstructure of Ti–Mn-based alloys for hybrid hydrogen storage vessel., J. Alloys Compd., 466, 558, 10.1016/j.jallcom.2007.11.120

Singh, 2004, Studies on improvement of hydrogen storage capacity of AB5 type:MmNi4.6Fe0.4 alloy., Int. J. Hydrogen Energy, 29, 1151, 10.1016/j.ijhydene.2003.10.014

Sofianos, 2020, Exploring halide destabilised calcium hydride as a high-temperature thermal battery., J. Alloys Compd., 819, 10.1016/j.jallcom.2019.153340

Song, 1987, Hydriding and dehydriding characteristics of mechanically alloyed mixtures Mg-xwt.%Ni (x = 5, 10, 25 and 55)., J. Less Common Met., 131, 71, 10.1016/0022-5088(87)90502-9

Song, 1997, A study of hydrogen permeation in aluminum alloy treated by various oxidation processes., J. Nucl. Mater., 246, 139, 10.1016/S0022-3115(97)00146-3

Stepanov, 1987, Hydriding properties of mechanical alloys Mg-Ni., J. Less Common Met., 131, 89, 10.1016/0022-5088(87)90504-2

Suda, 1985, Recent development of hydride energy systems in Japan., Int. J. Hydrogen Energy, 10, 757, 10.1016/0360-3199(85)90112-0

Suda, 1980, Experimental measurements of thermal conductivity., J. Less Common Met., 74, 127, 10.1016/0022-5088(80)90082-X

Suda, 1983, Effective thermal conductivity of metal hydride beds., J. Less Common Met., 89, 317, 10.1016/0022-5088(83)90340-5

Suda, 2001, Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts., Appl. Phys. A, 72, 209, 10.1007/s003390100785

Suda, 2002, Effect of surface modification by ion implantation on hydrogenation property of TiFe alloy., Mater. Trans., 43, 2703, 10.2320/matertrans.43.2703

Sugimoto, 2002, GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen., J. Alloys Compd., 301, 10.1016/S0925-8388(01)01504-3

Sun, 2018, Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art., Energy Storage Mater., 10, 168, 10.1016/j.ensm.2017.01.010

Suwarno, 2012, Selective hydrogen absorption from gaseous mixtures by BCC Ti-V alloys., Int. J. Hydrogen Energy, 37, 4127, 10.1016/j.ijhydene.2011.11.100

Takeichi, 2004, Hydrogenation properties and structure of Ti–Cr alloy prepared by mechanical grinding., Mat. Sci. Eng. B, 108, 100, 10.1016/j.mseb.2003.10.057

Takeichi, 2003, “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material., Int. J. Hydrogen Energy, 28, 1121, 10.1016/S0360-3199(02)00216-1

Tarasov, 2018, Cycling stability of RNi5 (R= La, La+ Ce) hydrides during the operation of metal hydride hydrogen compressor., Int. J. Hydrogen Energy, 43, 4415, 10.1016/j.ijhydene.2018.01.086

Terashita, 1999, Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder., J. Alloys Compd., 541, 10.1016/S0925-8388(99)00408-9

Tetuko, 2016, Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes., Int. J. Hydrogen Energy, 41, 4264, 10.1016/j.ijhydene.2015.12.194

ToolBox, 2003, Thermal Conductivity of selected Materials and Gases.

Towata, 2013, Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys., Int. J. Hydrogen Energy, 38, 3024, 10.1016/j.ijhydene.2012.12.100

Trudeau, 1992, The oxidation of nanocrystalline FeTi hydrogen storage compounds., Nanostruct. Mater., 1, 457, 10.1016/0965-9773(92)90078-C

Uchida, 1991, Catalytic effect of nickel, iron and palladium on hydriding titanium and storage materials., J. Less Common Met., 1076, 10.1016/S0022-5088(06)80015-9

Valera-Medina, 2018, Ammonia for power., Prog. Energy Combust. Sci., 69, 63, 10.1016/j.pecs.2018.07.001

Van Vucht, 1970, Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds., Philips Res. Rep., 25, 133

Vega, 2018, Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere., Int. J. Hydrogen Energy, 43, 2913, 10.1016/j.ijhydene.2017.12.054

Völkl, 1975, Diffusion in Solids

von Helmolt, 2007, Fuel cell vehicles: status 2007., J. Power Sources, 165, 833, 10.1016/j.jpowsour.2006.12.073

Wakao, 1971, Pressure dependency of effective thermal conductivity of packed beds., Chem. Eng. Sci., 26, 1753, 10.1016/0009-2509(71)86063-3

Walker, 2008, Solid-state hydrogen storage: materials and chemistry.

Wang, 2007, Comparing the hydrogen storage alloys—TiCrV and vanadium-rich TiCrMnV., Int. J. Hydrogen Energy, 32, 3959, 10.1016/j.ijhydene.2007.05.025

Wang, 2012, Thermodynamic Modeling of the Li-H and Ca-H Systems., J. Phase Equilibria Diffus., 33, 89, 10.1007/s11669-012-9997-z

Wang, 1995, Surface characteristics of fluorinated hydriding alloys., J. Alloys Compd., 231, 380, 10.1016/0925-8388(95)01851-4

Wang, 2009, Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds., J. Power Sources, 194, 997, 10.1016/j.jpowsour.2009.06.060

Wu, 2009, Characterization of thermal cross-talk in a MEMS-based thermopile detector array., J. Micromech. Microeng., 19, 10.1088/0960-1317/19/7/074022

Xiukui, 1989, Hydrogen permeation behaviour in austenitic stainless steels., Mater. Sci. Eng. A, 114, 179, 10.1016/0921-5093(89)90857-5

Yang, 2012, Assessment on the Long Term Performance of a LaNi5 based Hydrogen Storage System., Energy Procedia, 29, 720, 10.1016/j.egypro.2012.09.084

Yartys, 2019, Magnesium based materials for hydrogen based energy storage: Past, present and future., Int. J. Hydrogen Energy, 44, 7809, 10.1016/j.ijhydene.2018.12.212

Yu, 2004, Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys., J. Alloys Compd., 372, 272, 10.1016/j.jallcom.2003.09.153

Yu, 2006, Influence of Fe addition on hydrogen storage characteristics of Ti–V-based alloy., Int. J. Hydrogen Energy, 31, 1176, 10.1016/j.ijhydene.2005.09.008

Zaluski, , Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi., J. Alloys Compd., 217, 295, 10.1016/0925-8388(94)01358-6

Zaluski, , Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling., J. Alloys Compd., 227, 53, 10.1016/0925-8388(95)01623-6

Zepon, 2018, Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy., Int. J. Hydrogen Energy, 43, 1702, 10.1016/j.ijhydene.2017.11.106

Zhang, 2016, Miedema Calculator: A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema’s Theory., Comput. Phys. Commun., 209, 58, 10.1016/j.cpc.2016.08.013

Zhang, 2007, Solid solution formation criteria for high entropy alloys., Mater. Sci. Forum, 1337, 10.4028/www.scientific.net/msf.561-565.1337

Ziogou, 2011, Automation infrastructure and operation control strategy in a stand-alone power system based on renewable energy sources., J. Power Sources, 196, 9488, 10.1016/j.jpowsour.2011.07.029

Züchner, 1984, Auger electron spectroscopy investigation of the activation of TiFe for hydrogen uptake., J. Less Common Met., 99, 143, 10.1016/0022-5088(84)90344-8

Züttel, 2003, Materials for hydrogen storage., Mater. Today, 6, 24, 10.1016/S1369-7021(03)00922-2

Züttel, 2010, Hydrogen: the future energy carrier., Philos. Trans. A Math. Phys. Eng. Sci., 368, 3329, 10.1098/rsta.2010.0113