Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abd.Khalim Khafidz, 2016, The kinetics of lightweight solid-state hydrogen storage materials: a review., Int. J. Hydrogen Energy, 41, 13131, 10.1016/j.ijhydene.2016.05.169
Abdin, 2018, One-dimensional metal-hydride tank model and simulation in Matlab–Simulink., Int. J. Hydrogen Energy, 43, 5048, 10.1016/j.ijhydene.2018.01.100
Abe, 2007, Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing., J. Alloys Compds., 200, 10.1016/j.jallcom.2006.12.063
Afzal, 2017, Heat transfer techniques in metal hydride hydrogen storage: a review., Int. J. Hydrogen Energy, 42, 30661, 10.1016/j.ijhydene.2017.10.166
Akiba, 1998, Hydrogen absorption by Laves phase related BCC solid solution., Intermetallics, 6, 461, 10.1016/S0966-9795(97)00088-5
Ares, 2004, Influence of thermal annealing on the hydrogenation properties of mechanically milled AB5-type alloys., Mat. Sci. Eng. B Solid, 108, 76, 10.1016/j.mseb.2003.10.083
Askri, 2009, Optimization of hydrogen storage in metal-hydride tanks., Int. J. Hydrogen Energy, 34, 897, 10.1016/j.ijhydene.2008.11.021
Azeem, 2012, Investigation of thermal conductivity enhancement in bakelite–graphite particulate filled polymeric composite., Int. J. Eng. Sci., 52, 30, 10.1016/j.ijengsci.2011.12.002
Balakrishnan, 2020, Destabilised calcium hydride as a promising high-temperature thermal battery., J. Phys. Chem. C, 124, 17512, 10.1021/acs.jpcc.0c04754
Begeal, 1978, Hydrogen and deuterium permeation in copper alloys, copper–gold brazing alloys, gold, and the in situ growth of stable oxide permeation barriers., J. Vac. Sci. Technol., 15, 1146, 10.1116/1.569527
Bérubé, 2007, Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review., Int. J. Energy Res., 31, 637, 10.1002/er.1284
Bird, 2020, Thermal properties of thermochemical heat storage materials., Phys. Chem. Chem. Phys., 22, 4617, 10.1039/C9CP05940G
Birnbaum, 2003, Hydrogen effects on deformation and fracture: science and sociology., MRS Bull., 28, 479, 10.1557/mrs2003.143
Birnbaum, 1987, On the mechanisms of hydrogen related fracture in metals, Environment Sensitive Fracture of Metals and Alloys, 105
Bloch, 1995, The temperature-dependent changes of the kinetics and morphology of hydride formation in zirconium., J. Alloys Compds., 216, 187, 10.1016/0925-8388(94)01270-R
Bloch, 1997, Kinetics and mechanisms of metal hydrides formation—a review., J. Alloys Compds., 25, 529, 10.1016/S0925-8388(96)03070-8
Bloch, 1984, The topochemistry of hydride formation in rare earth metals., J. Less Common Met., 102, 311, 10.1016/0022-5088(84)90326-6
Borzone, 2014, Stability of LaNi5–xSnx cycled in hydrogen., Int. J. Hydrogen Energy, 39, 8791, 10.1016/j.ijhydene.2013.12.031
Bououdina, 1998, The investigation of the Zr1–yTiy(Cr1–xNix)2–H2 system 0.0≤y≤1.0 and 0.0≤x≤1.0 Phase composition analysis and thermodynamic properties., J. Alloys Compds., 281, 290, 10.1016/S0925-8388(98)00792-0
Bououdina, 2006, Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties., Int. J. Hydrogen Energy, 31, 177, 10.1016/j.ijhydene.2005.04.049
Bowman, 1995, The effect of tin on the degradation of LaNi5–ySny metal hydrides during thermal cycling., J. Alloys Compds., 217, 185, 10.1016/0925-8388(94)01337-3
Broom, 2011, Hydrogen Storage Materials: The Characterisation of Their Storage Properties., 10.1007/978-0-85729-221-6
Buchner, 1982, The daimler-benz hydride vehicle project., Int. J. Hydrogen Energy, 7, 259, 10.1016/0360-3199(82)90089-1
Chen, 2013, Development of Ti–Cr–Mn–Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application., Int. J. Hydrogen Energy, 38, 12803, 10.1016/j.ijhydene.2013.07.073
Cho, 2007, Hydrogen absorption–desorption properties of Ti0.32Cr0.43V0.25 alloy., J. Alloys Compds., 430, 136, 10.1016/j.jallcom.2006.04.068
Choi, 2010, Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage., Electrochem. Commun., 12, 378, 10.1016/j.elecom.2009.12.039
Corgnale, 2014, Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants., Renew. Sustain. Energy Rev., 38, 821, 10.1016/j.rser.2014.07.049
Corgnale, 2013, Metal hydride bed system model for renewable source driven Regenerative Fuel Cell., J. Alloys Compds., 580, S406, 10.1016/j.jallcom.2013.03.010
Corré, 1999, Effects of mechanical grinding on the hydrogen storage and electrochemical properties of LaNi5., J. Alloys Compds., 292, 166, 10.1016/S0925-8388(99)00084-5
Crivello, 2003, Electronic properties of lani4.75sn0.25, lani4.5m0.5 (m= si, ge, sn), lani4.5sn0.5h5., J. Alloys Compds., 356, 151, 10.1016/S0925-8388(02)01224-0
Curtis, 1963, Thermodynamic properties of calcium hydride1., J. Phys. Chem., 67, 1061, 10.1021/j100799a027
Darras, 2012, PV output power fluctuations smoothing: the MYRTE platform experience., Int. J. Hydrogen Energy, 37, 14015, 10.1016/j.ijhydene.2012.07.083
Davids, 2011, Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium., Int. J. Hydrogen Energy, 36, 9743, 10.1016/j.ijhydene.2011.05.036
Delhomme, 2013, Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank., Int. J. Hydrogen Energy, 38, 4740, 10.1016/j.ijhydene.2013.01.140
d’Entremont, 2017, Modeling of a thermal energy storage system based on coupled metal hydrides (magnesium iron – sodium alanate) for concentrating solar power plants., Int. J. Hydrogen Energy, 42, 22518, 10.1016/j.ijhydene.2017.04.231
Dhaou, 2007, Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds., Int. J. Hydrogen Energy, 32, 576, 10.1016/j.ijhydene.2006.07.001
Dhaou, 2010, Experimental study of a metal hydride vessel based on a finned spiral heat exchanger., Int. J. Hydrogen Energy, 35, 1674, 10.1016/j.ijhydene.2009.11.094
dos Santos, 2003, Structural and hydrogenation properties of an 80wt%TiCr1.1V0.9–20wt%LaNi5 composite material., Int. J. Hydrogen Energy, 28, 1237, 10.1016/S0360-3199(03)00006-5
Edalati, 2013, High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure., Int. J. Hydrogen Energy, 38, 4622, 10.1016/j.ijhydene.2013.01.185
Edalati, 2014, Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences., Int. J. Hydrogen Energy, 39, 15589, 10.1016/j.ijhydene.2014.07.124
Edalati, , Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics., Scr. Mater., 124, 108, 10.1016/j.scriptamat.2016.07.007
Edalati, 2018, Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: investigation using ultrasonic SMAT and HPT processes., J. Alloys Compds., 737, 337, 10.1016/j.jallcom.2017.12.053
Edalati, , Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion., Int. J. Hydrogen Energy, 41, 8917, 10.1016/j.ijhydene.2016.03.146
Emami, 2015, Hydrogen storage performance of TiFe after processing by ball milling., Acta Mater., 88, 190, 10.1016/j.actamat.2014.12.052
Energy Reilly, 1970, Higher hydrides of vanadium and niobium., Inorg. Chem., 9, 1678, 10.1021/ic50089a013
Felderhoff, 2009, High temperature metal hydrides as heat storage materials for solar and related applications., Int. J. Mol. Sci., 10, 325, 10.3390/ijms10010325
Førde, 2009, Thermal integration of a metal hydride storage unit and a PEM fuel cell stack., Int. J. Hydrogen Energy, 34, 6730, 10.1016/j.ijhydene.2009.05.146
Friedlmeier, 1995, Cyclic stability of various application-relevant metal hydrides., J. Alloys Compds., 231, 880, 10.1016/0925-8388(95)01776-3
2014, MYRTE hydrogen energy storage test powers up in Corsica., Fuel Cells Bull., 2014, 10.1016/S1464-2859(14)70170-1
, Dutch partners deliver first 2 MW PEMFC plant, in China., Fuel Cells Bull., 2016, 10.1016/S1464-2859(16)30329-7
, Switzerland unveils fuel cell powered heavy truck, and first hydroelectric hydrogen station., Fuel Cells Bull., 2016, 14, 10.1016/S1464-2859(16)30367-4
, Doosan starts installation of hydrogen-fueled 50 MW fuel cell power plant in South Korea., Fuel Cells Bull., 2018, 10.1016/S1464-2859(18)30270-0
Fujii, 2002, Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5., J. Alloys Compds., 33, 747, 10.1016/S0925-8388(01)01508-0
Gahleitner, 2013, Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications., Int. J. Hydrogen Energy, 38, 2039, 10.1016/j.ijhydene.2012.12.010
Gangloff, 2003, Hydrogen Assisted Cracking of High Strength Alloys.
Garrier, 2011, MgH2 intermediate scale tank tests under various experimental conditions., Int. J. Hydrogen Energy, 36, 9719, 10.1016/j.ijhydene.2011.05.017
Goodell, 1984, Stability of rechargeable hydriding alloys during extended cycling., J. Less Common Met., 99, 1, 10.1016/0022-5088(84)90330-8
Goodell, 1983, Hydriding and dehydriding rates of the LaNi5-H system., J. Less Common Met., 89, 117, 10.1016/0022-5088(83)90255-2
Gosselin, 2019, First hydrogenation enhancement in TiFe alloys for hydrogen storage doped with yttrium., Metals, 9, 10.3390/met9020242
Griessen, 1988, Heat of formation models, Hydrogen in Intermetallic Compounds I, 219, 10.1007/3540183337_13
Groll, 1993, Reaction beds for dry sorption machines., Heat Recov. Syst. CHP, 13, 341, 10.1016/0890-4332(93)90059-5
Hahne, 1998, Thermal conductivity of metal hydride materials for storage of hydrogen: experimental investigation., Int. J. Hydrogen Energy, 23, 107, 10.1016/S0360-3199(97)00020-7
Haller, 1988, Untersuchung des Wärme-und Stofftransports in Metallhydrid-Reaktionsbetten.
Haraki, 2008, Properties of hydrogen absorption by nano-structured FeTi alloys., Int. J. Mater. Res., 99, 507, 10.3139/146.101669
Hirscher, 2020, Materials for hydrogen-based energy storage – past, recent progress and future outlook., J. Alloys Compds., 827, 10.1016/j.jallcom.2019.153548
Hongo, 2015, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion., Acta Mater., 92, 46, 10.1016/j.actamat.2015.03.036
Hotta, 2007, Synthesis of Ti–Fe alloys by mechanical alloying., J. Alloys Compds., 439, 221, 10.1016/j.jallcom.2006.05.137
Huot, 2008, Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1., J. Alloys Compds., 453, 203, 10.1016/j.jallcom.2006.11.193
Hwang, 2012, Characteristic study on fuel cell/battery hybrid power system on a light electric vehicle., J. Power Sources, 207, 111, 10.1016/j.jpowsour.2012.02.008
Iba, 1995, The relation between microstructure and hydrogen absorbing property in Laves phase-solid solution multiphase alloys., J. Alloys Compds., 231, 508, 10.1016/0925-8388(95)01863-8
Iba, 1997, Hydrogen absorption and modulated structure in Ti–V–Mn alloys., J. Alloys Compds., 21, 10.1016/S0925-8388(96)03072-1
Inui, 2002, Lattice defects introduced during hydrogen absorption–desorption cycles and their effects on P–C characteristics in some intermetallic compounds., J. Alloys Compds., 117, 10.1016/S0925-8388(01)01489-X
Ipsakis, 2009, Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage., Int. J. Hydrogen Energy, 34, 7081, 10.1016/j.ijhydene.2008.06.051
2004, Basic Considerations for the Safety of Hydrogen Systems.
2012, Gas Cylinders — Compatibility of Cylinder and Valve Materials with Gas Contents — Part 1: Metallic materials.
Ivanov, 1987, Magnesium mechanical alloys for hydrogen storage., J. Less Common Met., 131, 25, 10.1016/0022-5088(87)90497-8
Jai-Young, 1983, The activation processes and hydriding kinetics of FeTi., J. Less Common Met., 89, 163, 10.1016/0022-5088(83)90262-X
Jehan, 2013, McPhy-Energy’s proposal for solid state hydrogen storage materials and systems., J. Alloys Compds., 580, S343, 10.1016/j.jallcom.2013.03.266
Jemni, 1999, Experimental and theoretical study of ametal–hydrogen reactor., Int. J. Hydrogen Energy, 24, 631, 10.1016/S0360-3199(98)00117-7
Joubert, 2002, A Structural study of the homogeneity domain of LaNi5., J. Solid State Chem., 166, 1, 10.1006/jssc.2001.9499
Joubert, 1999, Crystallographic study of LaNi5–xSnx (0.2≤x≤0.5) compounds and their hydrides., J. Alloys Compds., 29, 124, 10.1016/S0925-8388(99)00311-4
Kan, 2015, A simple and effective model for prediction of effective thermal conductivity of vacuum insulation panels., Future Cities Environ., 1, 10.1186/s40984-015-0001-z
Kao, 2010, Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys., Int. J. Hydrogen Energy, 35, 9046, 10.1016/j.ijhydene.2010.06.012
Kim, 1998, Thermal analysis of the Ca0.4Mm0.6Ni5 metal–hydride reactor., Appl. Therm. Eng., 18, 1325, 10.1016/S1359-4311(98)00007-6
Kim, 2001, Metal hydride compacts of improved thermal conductivity., Int. J. Hydrogen Energy, 26, 609, 10.1016/S0360-3199(00)00115-4
Klebanoff, 2012, Hydrogen Storage Technology: Materials and Applications.
Kojima, 2006, Development of metal hydride with high dissociation pressure., J. Alloys Compds., 419, 256, 10.1016/j.jallcom.2005.08.078
Kulshreshtha, 1993, Hydriding characteristics of palladium and platinum alloyed FeTi., J. Mater. Sci., 28, 4229, 10.1007/bf00351259
Kunce, 2013, Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS)., Int. J. Hydrogen Energy, 38, 12180, 10.1016/j.ijhydene.2013.05.071
Kuriiwa, 1999, New V-based alloys with high protium absorption and desorption capacity., J. Alloys Compds., 433, 10.1016/S0925-8388(99)00325-4
Lai, 2018, Borohydrides as solid-state hydrogen storage materials: past, current approaches and future perspectives., Gen. Chem., 4, 10.21127/yaoyigc20180017
Lai, 2015, Hydrogen storage materials for mobile and stationary applications: current state of the art., ChemSusChem, 8, 2789, 10.1002/cssc.201500231
Lai, 2018, Rational design of nanosized light elements for hydrogen storage: classes, synthesis, characterization, and properties., Adv. Mater. Technol., 3, 10.1002/admt.201700298
Lee, 1991, Microstructural correlations with the hydrogenation kinetics of FeTi1+ξ alloys., J. Alloys Compd., 177, 107, 10.1016/0925-8388(91)90061-Y
Lévesque, 2000, Hydrogen storage for fuel cell systems with stationary applications— I. Transient measurement technique for packed bed evaluation., Int. J. Hydrogen Energy, 25, 1095, 10.1016/S0360-3199(00)00023-9
Li, 2019, Ti-V-C-based alloy with a FCC Lattice Structure for Hydrogen Storage., Molecules, 24
Li, 2018, Synthesis, morphology, and hydrogen absorption properties of TiVMn and TiCrMn nanoalloys with a FCC structure., Scanning, 2018, 1, 10.1155/2018/5906473
Li, 1999, Reaction mechanism of hydriding combustion synthesis of Mg2NiH4., Intermetallics, 7, 671, 10.1016/S0966-9795(98)00082-X
Liang, , Hydrogen storage properties of the mechanically alloyed LaNi5-based materials., J. Alloys Compds., 320, 133, 10.1016/S0925-8388(01)00929-X
Liang, , Mechanical alloying and hydrogen storage properties of CaNi5-based alloys., J. Alloys Compds., 321, 146, 10.1016/S0925-8388(01)01010-6
Lias, 2016, Thermal conductivity and microstructure of aluminum foam tube produce (AFTP) using infiltration method with vacuum-gas., Imp. J. Interdiscip. Res., 1843
Liu, 1995, Properties and characteristics of fluorinated hydriding alloys., J. Alloys Compds., 231, 742, 10.1016/0925-8388(95)01711-9
Liu, 2017, Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure., Proc. Natl. Acad. Sci. U.S.A., 114, 6990, 10.1073/pnas.1704505114
Liu, 2011, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries., J. Mater. Chem., 21, 4743, 10.1039/C0JM01921F
Lototsky, 2005, Vanadium-based BCC alloys: phase-structural characteristics and hydrogen sorption properties., J. Alloys Compds., 421, 10.1016/j.jallcom.2005.01.139
Lototskyy, 2017, The use of metal hydrides in fuel cell applications., Prog. Nat. Sci., 27, 3, 10.1016/j.pnsc.2017.01.008
Louthan, 1975, Hydrogen transport in austenitic stainless steel., Corros. Sci., 15, 565, 10.1016/0010-938X(75)90022-0
Louthan, 1975, Hydrogen diffusion and trapping in nickel., Acta Metall., 23, 745, 10.1016/0001-6160(75)90057-7
Luo, 1998, Further studies of the isotherms of LaNi5–xSnx–H for x=0–0.5., J. Alloys Compds., 267, 171, 10.1016/S0925-8388(97)00536-7
Lv, 2017, Hydrogenation improvement of TiFe by adding ZrMn2., Energy, 138, 375, 10.1016/j.energy.2017.07.072
MacDonald, 2006, A thermally coupled metal hydride hydrogen storage and fuel cell system., J. Power Sources, 161, 346, 10.1016/j.jpowsour.2006.04.018
Manickam, 2019, Future perspectives of thermal energy storage with metal hydrides., Int. J. Hydrogen Energy, 44, 7738, 10.1016/j.ijhydene.2018.12.011
Manna, 2018, Mechanical activation of air exposed TiFe + 4 wt% Zr alloy for hydrogenation by cold rolling and ball milling., Int. J. Hydrogen Energy, 43, 20795, 10.1016/j.ijhydene.2018.09.096
Martin, 1996, Absorption and desorption kinetics of hydrogen storage alloys., J. Alloys Compds., 238, 193, 10.1016/0925-8388(96)02217-7
Mazzucco, 2015, Generalized computational model for high-pressure metal hydrides with variable thermal properties., Int. J. Hydrogen Energy, 40, 11470, 10.1016/j.ijhydene.2015.03.032
Mazzucco, 2014, Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: a review., Int. J. Hydrogen Energy, 39, 17054, 10.1016/j.ijhydene.2014.08.047
Mellouli, 2007, A novel design of a heat exchanger for a metal-hydrogen reactor., Int. J. Hydrogen Energy, 32, 3501, 10.1016/j.ijhydene.2007.02.039
Mellouli, 2009, Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger., Int. J. Hydrogen Energy, 34, 9393, 10.1016/j.ijhydene.2009.09.043
Melnichuk, 2009, Optimized heat transfer fin design for a metal-hydride hydrogen storage container., Int. J. Hydrogen Energy, 34, 3417, 10.1016/j.ijhydene.2009.02.040
Miedema, 1977, Model predictions for the enthalpy of formation of transition metal alloys., Calphad, 1, 341, 10.1016/0364-5916(77)90011-6
Miller, 2002, Advanced underground vehicle power and control fuel cell mine locomotive, Proceedings of the 2002 US DOE Hydrogen Program Review NREL/CP-610-32405
Mintz, 1985, Evaluation of the kinetics and mechanisms of hybriding reactions., Prog. Solid State Chem., 16, 163, 10.1016/0079-6786(85)90004-4
Mintz, 1981, Hydrides of ternary TiFexM1–x(M=Cr, Mn, Co, Ni) intermetallics., J. Appl. Phys., 52, 463, 10.1063/1.329808
Miraglia, 2012, Hydrogen sorption properties of compounds based on BCC Ti1–xV1–yCr1+x+y alloys., J. Alloys Compds., 536, 1, 10.1016/j.jallcom.2012.05.008
Mohammadshahi, 2016, A review of mathematical modelling of metal-hydride systems for hydrogen storage applications., Int. J. Hydrogen Energy, 41, 3470, 10.1016/j.ijhydene.2015.12.079
Mori, 2005, Hydrogen storage materials for fuel cell vehicles high-pressure MH system., J. Jpn. Inst. Met., 69, 308, 10.2320/jinstmet.69.308
Nagel, 1986, Effective thermal conductivity of a metal hydride bed augmented with a copper wire matrix., J. Less Common Met., 120, 35, 10.1016/0022-5088(86)90625-9
Nasako, 1998, Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy., J. Alloys Compds., 264, 271, 10.1016/S0925-8388(97)00246-6
Nelson, 1973, Gas-Phase Hydrogen Permeation through Alpha Iron, 4130 Steel, and 304 Stainless Steel from Less than 100 C to near 600 C.
Nishimiya, 2000, Hydriding characteristics of zirconium-substituted FeTi., J. Alloys Compds., 313, 53, 10.1016/S0925-8388(00)01181-6
Okada, 2002, Ti–V–Cr b.c.c. alloys with high protium content., J. Alloys Compds., 511, 10.1016/S0925-8388(01)01647-4
Orimo, 1998, Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: a review., Intermetallics, 6, 185, 10.1016/S0966-9795(97)00064-2
Orimo, 1999, Hydriding properties of the MgNi-based systems., J. Alloys Compds., 437, 10.1016/S0925-8388(99)00327-8
Parra, 2019, A review on the role, cost and value of hydrogen energy systems for deep decarbonisation., Renew. Sustain. Energy Rev., 101, 279, 10.1016/j.rser.2018.11.010
Pasini, 2013, Metal hydride material requirements for automotive hydrogen storage systems., Int. J. Hydrogen Energy, 38, 9755, 10.1016/j.ijhydene.2012.08.112
Pelay, 2017, Thermal energy storage systems for concentrated solar power plants., Renew. Sustain. Energy Rev., 79, 82, 10.1016/j.rser.2017.03.139
Pickering, 2018, Induction melted AB2-type metal hydrides for hydrogen storage and compression applications., Mater. Today Proc., 5, 10470, 10.1016/j.matpr.2017.12.378
Poupin, 2020, An experimental high temperature thermal battery coupled to a low temperature metal hydride for solar thermal energy storage., Sustain. Energy Fuels, 4, 285, 10.1039/C9SE00538B
Qin, 2008, Pulverization, expansion of La0. 6Y0. 4Ni4. 8Mn0. 2 during hydrogen absorption–desorption cycles and their influences in thin-wall reactors., Int. J. Hydrogen Energy, 33, 709, 10.1016/j.ijhydene.2007.10.029
Quijano, 2009, Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2, and HfH2: a first-principles study., Phys. Rev. B, 80, 10.1103/PhysRevB.80.184103
Reilly, 1974, Formation and properties of iron titanium hydride., Inorg. Chem., 13, 218, 10.1021/ic50131a042
Rizzi, 2015, Integration of a PEM fuel cell with a metal hydride tank for stationary applications., J. Alloys Compds., 645, S338, 10.1016/j.jallcom.2014.12.145
Rudman, 1983, Hydriding and dehydriding kinetics., J. Less Common Met., 89, 93, 10.1016/0022-5088(83)90253-9
Rusman, 2016, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications., Int. J. Hydrogen Energy, 41, 12108, 10.1016/j.ijhydene.2016.05.244
Saita, 2007, Hydriding combustion synthesis of TiFe., J. Alloys Compds., 195, 10.1016/j.jallcom.2007.02.150
Sakintuna, 2007, Metal hydride materials for solid hydrogen storage: a review., Int. J. Hydrogen Energy, 32, 1121, 10.1016/j.ijhydene.2006.11.022
Sandrock, 1997, State-of-the-Art Review of Hydrogen Storage in Reversible Metal Hydrides for Military Fuel Cell Applications.
Sandrock, 1999, A panoramic overview of hydrogen storage alloys from a gas reaction point of view., J. Alloys Compds., 877, 10.1016/S0925-8388(99)00384-9
Sandrock, 1989, On the disproportionation of intermetallic hydrides., Z. Phys. Chem., 164, 1285, 10.1524/zpch.1989.164.Part_2.1285
Santos, 2004, Mechanical and reactive milling of a TiCrV BCC solid solution., J. Metastab. Nanocryst. Mater., 291
Satya Sekhar, 2015, Performance analysis of cylindrical metal hydride beds with various heat exchange options., J. Alloys Compds., 645, S89, 10.1016/j.jallcom.2014.12.272
Schlapbach, 1983, The activation of FeTi for hydrogen absorption., Appl. Phys. A, 32, 169, 10.1007/bf00820257
Schlapbach, 1980, Surface effects and the formation of metal hydrides., J. Less Common Met., 73, 145, 10.1016/0022-5088(80)90354-9
Schober, 1981, The activation of FeTi for hydrogen storage: a different view., Scr. Metall., 15, 913, 10.1016/0036-9748(81)90277-5
Schoenung, 2010, ”<Task-18-Final-Report-Phase-2.pdf>”.
Selvaraj, 2018, Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor., Int. J. Hydrogen Energy, 43, 2881, 10.1016/j.ijhydene.2017.12.159
Seo, 2003, Hydrogen storage properties of vanadium-based b.c.c. solid solution metal hydrides., J. Alloys Compd., 348, 252, 10.1016/S0925-8388(02)00831-9
Shafiee, 2016, Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems – A review., Int. J. Hydrogen Energy, 41, 9462, 10.1016/j.ijhydene.2016.03.133
Shen, 2005, On the cyclic hydrogenation stability of an Lm(NiAl)5-based alloy with different hydrogen loadings., J. Alloys Compd., 392, 187, 10.1016/j.jallcom.2004.09.015
Shen, 2015, Cyclic hydrogenation stability of γ-hydrides for Ti25V35Cr40 alloys doped with carbon., J. Alloys Compd., 648, 534, 10.1016/j.jallcom.2015.07.021
Sheppard, 2016, Metal hydrides for concentrating solar thermal power energy storage., Appl. Phys. A, 122, 10.1007/s00339-016-9825-0
Sheppard, 2019, Methods for accurate high-temperature Sieverts-type hydrogen measurements of metal hydrides., J. Alloys Compd., 787, 1225, 10.1016/j.jallcom.2019.02.067
Shibuya, 2008, Hydrogenation properties and microstructure of Ti–Mn-based alloys for hybrid hydrogen storage vessel., J. Alloys Compd., 466, 558, 10.1016/j.jallcom.2007.11.120
Singh, 2004, Studies on improvement of hydrogen storage capacity of AB5 type:MmNi4.6Fe0.4 alloy., Int. J. Hydrogen Energy, 29, 1151, 10.1016/j.ijhydene.2003.10.014
Sofianos, 2020, Exploring halide destabilised calcium hydride as a high-temperature thermal battery., J. Alloys Compd., 819, 10.1016/j.jallcom.2019.153340
Song, 1987, Hydriding and dehydriding characteristics of mechanically alloyed mixtures Mg-xwt.%Ni (x = 5, 10, 25 and 55)., J. Less Common Met., 131, 71, 10.1016/0022-5088(87)90502-9
Song, 1997, A study of hydrogen permeation in aluminum alloy treated by various oxidation processes., J. Nucl. Mater., 246, 139, 10.1016/S0022-3115(97)00146-3
Stepanov, 1987, Hydriding properties of mechanical alloys Mg-Ni., J. Less Common Met., 131, 89, 10.1016/0022-5088(87)90504-2
Suda, 1985, Recent development of hydride energy systems in Japan., Int. J. Hydrogen Energy, 10, 757, 10.1016/0360-3199(85)90112-0
Suda, 1980, Experimental measurements of thermal conductivity., J. Less Common Met., 74, 127, 10.1016/0022-5088(80)90082-X
Suda, 1983, Effective thermal conductivity of metal hydride beds., J. Less Common Met., 89, 317, 10.1016/0022-5088(83)90340-5
Suda, 2001, Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts., Appl. Phys. A, 72, 209, 10.1007/s003390100785
Suda, 2002, Effect of surface modification by ion implantation on hydrogenation property of TiFe alloy., Mater. Trans., 43, 2703, 10.2320/matertrans.43.2703
Sugimoto, 2002, GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen., J. Alloys Compd., 301, 10.1016/S0925-8388(01)01504-3
Sun, 2018, Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art., Energy Storage Mater., 10, 168, 10.1016/j.ensm.2017.01.010
Suwarno, 2012, Selective hydrogen absorption from gaseous mixtures by BCC Ti-V alloys., Int. J. Hydrogen Energy, 37, 4127, 10.1016/j.ijhydene.2011.11.100
Takeichi, 2004, Hydrogenation properties and structure of Ti–Cr alloy prepared by mechanical grinding., Mat. Sci. Eng. B, 108, 100, 10.1016/j.mseb.2003.10.057
Takeichi, 2003, “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material., Int. J. Hydrogen Energy, 28, 1121, 10.1016/S0360-3199(02)00216-1
Tarasov, 2018, Cycling stability of RNi5 (R= La, La+ Ce) hydrides during the operation of metal hydride hydrogen compressor., Int. J. Hydrogen Energy, 43, 4415, 10.1016/j.ijhydene.2018.01.086
Terashita, 1999, Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder., J. Alloys Compd., 541, 10.1016/S0925-8388(99)00408-9
Tetuko, 2016, Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes., Int. J. Hydrogen Energy, 41, 4264, 10.1016/j.ijhydene.2015.12.194
ToolBox, 2003, Thermal Conductivity of selected Materials and Gases.
Towata, 2013, Effect of partial niobium and iron substitution on short-term cycle durability of hydrogen storage Ti–Cr–V alloys., Int. J. Hydrogen Energy, 38, 3024, 10.1016/j.ijhydene.2012.12.100
Trudeau, 1992, The oxidation of nanocrystalline FeTi hydrogen storage compounds., Nanostruct. Mater., 1, 457, 10.1016/0965-9773(92)90078-C
Uchida, 1991, Catalytic effect of nickel, iron and palladium on hydriding titanium and storage materials., J. Less Common Met., 1076, 10.1016/S0022-5088(06)80015-9
Valera-Medina, 2018, Ammonia for power., Prog. Energy Combust. Sci., 69, 63, 10.1016/j.pecs.2018.07.001
Van Vucht, 1970, Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds., Philips Res. Rep., 25, 133
Vega, 2018, Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere., Int. J. Hydrogen Energy, 43, 2913, 10.1016/j.ijhydene.2017.12.054
Völkl, 1975, Diffusion in Solids
von Helmolt, 2007, Fuel cell vehicles: status 2007., J. Power Sources, 165, 833, 10.1016/j.jpowsour.2006.12.073
Wakao, 1971, Pressure dependency of effective thermal conductivity of packed beds., Chem. Eng. Sci., 26, 1753, 10.1016/0009-2509(71)86063-3
Walker, 2008, Solid-state hydrogen storage: materials and chemistry.
Wang, 2007, Comparing the hydrogen storage alloys—TiCrV and vanadium-rich TiCrMnV., Int. J. Hydrogen Energy, 32, 3959, 10.1016/j.ijhydene.2007.05.025
Wang, 2012, Thermodynamic Modeling of the Li-H and Ca-H Systems., J. Phase Equilibria Diffus., 33, 89, 10.1007/s11669-012-9997-z
Wang, 1995, Surface characteristics of fluorinated hydriding alloys., J. Alloys Compd., 231, 380, 10.1016/0925-8388(95)01851-4
Wang, 2009, Three-dimensional modeling of hydrogen sorption in metal hydride hydrogen storage beds., J. Power Sources, 194, 997, 10.1016/j.jpowsour.2009.06.060
Wu, 2009, Characterization of thermal cross-talk in a MEMS-based thermopile detector array., J. Micromech. Microeng., 19, 10.1088/0960-1317/19/7/074022
Xiukui, 1989, Hydrogen permeation behaviour in austenitic stainless steels., Mater. Sci. Eng. A, 114, 179, 10.1016/0921-5093(89)90857-5
Yang, 2012, Assessment on the Long Term Performance of a LaNi5 based Hydrogen Storage System., Energy Procedia, 29, 720, 10.1016/j.egypro.2012.09.084
Yartys, 2019, Magnesium based materials for hydrogen based energy storage: Past, present and future., Int. J. Hydrogen Energy, 44, 7809, 10.1016/j.ijhydene.2018.12.212
Yu, 2004, Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys., J. Alloys Compd., 372, 272, 10.1016/j.jallcom.2003.09.153
Yu, 2006, Influence of Fe addition on hydrogen storage characteristics of Ti–V-based alloy., Int. J. Hydrogen Energy, 31, 1176, 10.1016/j.ijhydene.2005.09.008
Zaluski, , Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi., J. Alloys Compd., 217, 295, 10.1016/0925-8388(94)01358-6
Zaluski, , Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling., J. Alloys Compd., 227, 53, 10.1016/0925-8388(95)01623-6
Zepon, 2018, Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy., Int. J. Hydrogen Energy, 43, 1702, 10.1016/j.ijhydene.2017.11.106
Zhang, 2016, Miedema Calculator: A thermodynamic platform for predicting formation enthalpies of alloys within framework of Miedema’s Theory., Comput. Phys. Commun., 209, 58, 10.1016/j.cpc.2016.08.013
Zhang, 2007, Solid solution formation criteria for high entropy alloys., Mater. Sci. Forum, 1337, 10.4028/www.scientific.net/msf.561-565.1337
Ziogou, 2011, Automation infrastructure and operation control strategy in a stand-alone power system based on renewable energy sources., J. Power Sources, 196, 9488, 10.1016/j.jpowsour.2011.07.029
Züchner, 1984, Auger electron spectroscopy investigation of the activation of TiFe for hydrogen uptake., J. Less Common Met., 99, 143, 10.1016/0022-5088(84)90344-8