Rolliniastatin-1, a bis-tetrahydrofuran acetogenin: The major compound of Annona mucosa Jacq. (Annonaceae) has potent grain-protective properties

Journal of Stored Products Research - Tập 89 - Trang 101686 - 2020
Leandro do Prado Ribeiro1, Gabriel Luiz Padoan Gonçalves2, Keylla Utherdyany Bicalho3, João Batista Fernandes3, José Djair Vendramim2
1Research Center for Family Agriculture, Agricultural Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Chapecó, Santa Catarina, Brazil
2Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
3Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil

Tài liệu tham khảo

Adams, 1976, Losses caused by insects, mites and microorganisms, 83 Agrofit Alali, 1999, Annonaceous acetogenins: recent progress, J. Nat. Prod., 62, 504, 10.1021/np980406d Ansante, 2015, Secondary metabolites from Neotropical Annonaceae: screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), Ind. Crop. Prod., 74, 969, 10.1016/j.indcrop.2015.05.058 Arriaga, 2008, Chemical constituents and insecticidal activity of Rollinia leptopetala (Annonaceae), Nat. Prod. Comm., 3, 1687 Bhardwaj, 2019, Bioactive compounds of Annona Bicalho, 2016 Boyer, 2012, A review of control methods and resistance mechanisms in stored-product insects, Bull. Entomol. Res., 102, 10.1017/S0007485311000654 Braga Sobrinho, 2014, Produção integrada de anonáceas no Brasil, Rev. Bras. Frutic., 36, 102, 10.1590/S0100-29452014000500012 Chen, 2012, Six cytotoxic annonaceous acetogenins from Annona squamosa seeds, Food Chem., 135, 960, 10.1016/j.foodchem.2012.05.041 Cordeiro, 2017, Insecticide resistance and size assortative mating in females of the maize weevil (Sitophilus zeamais), Pest Manag. Sci., 73, 823, 10.1002/ps.4437 Corrêa, 2011, Insecticide resistance, mixture potentiation and fitness in populations of the maize weevil (Sitophilus zeamais), Crop Prot., 30, 1655, 10.1016/j.cropro.2011.08.022 Corrêa, 2014, Are mitochondrial lineages, mitochondrial lysis and respiration rate associated with phosphine susceptibility in the maize weevil Sitophilus zeamais?, Ann. Appl. Biol., 165, 137, 10.1111/aab.12127 Costa, 2017, Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells, Pest Manag. Sci., 73, 636, 10.1002/ps.4350 Demétrio, 1997, Half-normal plots and overdispersion, Glim Newsletter, 27, 19 Domingues, 2020, Grain-protectant compounds from Duguetia lanceolata (Annonaceae) derivatives: bioassay-guided searching and toxicity against the maize weevil, J. Stored Prod. Res., 85, 1, 10.1016/j.jspr.2019.101549 Février, 1999, Acetogenins and other compounds from Rollinia emarginata and their antiprotozoal activities, Planta Med., 65, 47, 10.1055/s-1999-13961 Fiaz, 2018, Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae), Ecotoxicol. Environ. Saf., 156, 1, 10.1016/j.ecoenv.2018.02.080 Freitas, 2016, Allyl isothiocyanate actions on populations of Sitophilus zeamais resistant to phosphine: toxicity, emergence inhibition and repellency, J. Stored Prod. Res., 69, 257, 10.1016/j.jspr.2016.09.006 Geisler, 2019, Laboratory and field assessments of lethal and sublethal toxicities of acetogenin-based bioinsecticides against Zaprionus indianus (Diptera: Drosophilidae), Chil. J. Agric. Res., 79, 501, 10.4067/S0718-58392019000400501 González-Coloma, 2002, Selective action of acetogenin mitochondrial complex I inhibitors, Z. Naturforsch. C Biosci., 57, 1028, 10.1515/znc-2002-11-1213 González-Esquinca, 2014, Alkaloids and acetogenins in Annonaceae development: biological considerations, Rev. Bras. Frutic., 36, 1, 10.1590/S0100-29452014000500001 Guadaño, 2000, Insecticidal and mutagenic evaluation of two annonaceous acetogenins, J. Nat. Prod., 63, 773, 10.1021/np990328+ Guedes, 1995, Resistance to DDT and pyrethroids in Brazilian populations of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae), J. Stored Prod. Res., 31, 145, 10.1016/0022-474X(94)00043-S Hinde, 1998, Overdispersion: models and estimation, Comput. Stat. Data Anal., 27, 151, 10.1016/S0167-9473(98)00007-3 Johnson, 2000, Thwarting resistance: annonaceous acetogenins as news pesticidal and antitumor agents Keum, 2005, Stereoselective syntheses of rolliniastatin 1, rollimembrin, and membranacin, J. American Chem. Soc., 127, 10396, 10.1021/ja0526867 Koert, 1994, Total synthesis of (+)-rolliniastatin 1, Tetrahedron Lett., 35, 2517, 10.1016/S0040-4039(00)77159-0 Liaw, 2016, Acetogenins from Annonaceae, 10.1007/978-3-319-22692-7_2 Lümmen, 1998, Complex I inhibitors as insecticides and acaricides, Biochim. Biophys. Acta, 1364, 287, 10.1016/S0005-2728(98)00034-6 Maas, 2009, Neotropical Annonaceae Maas, 2013 Nauen, 2019, IRAC: insecticide resistance and mode-of-action, classification of insecticides, Modern Crop Prot. Comp., 3, 995 Nelder, 1972, Generalized linear models, J. Roy. Stat. Soc., 135, 370 Perez-Mendoza, 1999, Survey of insecticide resistance in Mexican populations of maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), J. Stored Prod. Res., 35, 107, 10.1016/S0022-474X(98)00017-4 Pettit, 1987, Isolation and structure of rolliniastatin 1 from the South American tree Rollinia mucosa, Can. J. Chem., 65, 1433, 10.1139/v87-242 Pimentel, 2009, Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), J. Stored Prod. Res., 45, 71, 10.1016/j.jspr.2008.09.001 R Core Team, 2017 Ribeiro, 2013, Annona mucosa Jacq. (Annonaceae): a promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae), J. Stored Prod. Res., 55, 6, 10.1016/j.jspr.2013.06.001 Ribeiro, 2015, Toxicity of an acetogenin-based bioinsecticide against Diaphorina citri (Hemiptera: Liviidae) and its parasitoid Tamarixia radiata (hymenoptera: eulophidae). Fla, Fla Entomol, 98, 835, 10.1653/024.098.0304 Ribeiro, 2016, Searching for promising sources of grain protectors in extracts from Neotropical Annonaceae, Blacpma, 15, 215 Ribeiro, 2018, Toxicity of an annonin-based commercial bioinsecticide against three primary pest species of stored products, Neotrop. Entomol., 47, 145, 10.1007/s13744-017-0510-6 Saez, 1993, Rioclarine et membranacine, deux nouvelles acetogenines bis-tetrahydrofuraniques des graines de Rollinia membranacea, J. Nat. Prod., 56, 351, 10.1021/np50093a007 Souza, 2017, Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera, J. Pest. Sci., 90, 701, 10.1007/s10340-016-0817-9 Stupp, 2020, Acetogenin-based formulated bioinsecticides on Anastrepha fraterculus: toxicity and potential use in insecticidal toxic baits, Neotrop. Entomol., 49, 292, 10.1007/s13744-019-00747-9 Stupp, 2020, Lethal and sublethal toxicities of acetogenin-based bioinsecticides on Ceratitis capitata and the parasitoid Diachasmimorpha longicaudata, Phytoparasitica, 1–13 Sung’hwa, 1999, Ophrypetalin and other annonaceous acetogenins from Ophrypetalum odoratum, Nat. Prod. Lett., 13, 195, 10.1080/10575639908048786 Tolosa, 2012, Insecticidal effects of acetogenins from Rollinia occidentalis seed extract, Nat. Prod. Comm., 7, 1645 Tormo, 1999, Kinetic characterization of mitochondrial complex I inhibitors using annonaceous acetogenins, Arch. Biochem. Biophys., 369, 119, 10.1006/abbi.1999.1343 Willer, 2019