Roll-to-roll production of 30-inch graphene films for transparent electrodes

Nature Nanotechnology - Tập 5 Số 8 - Trang 574-578 - 2010
Sukang Bae1, Hyeongkeun Kim1, Youngbin Lee1, Xiangfan Xu2, Jae Sung Park3, Yi Zheng2, Jayakumar Balakrishnan2, Lei Tian1, Hye Ri Kim4, Young Il Song5, Young Jin Kim6, Kwang S. Kim3, Barbaros Özyilmaz2, Jong‐Hyun Ahn7, Byung Hee Hong4, Sumio Iijima8
1SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon, 440-746, Korea
2NanoCore & Department of Physics, National University of Singapore, Singapore, 117576 & 117542
3Department of Chemistry, Center for Superfunctional Materials, Pohang University of Science and Technology, Hyojadong, Namgu, Pohang, 790-784, Korea
4Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
5Digital & IT Solution Division, Samsung Techwin, Seongnam, 462-807, Korea
6School of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
7School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
8Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 & Faculty of Science and Engineering, Meijo University, Nagoya, 468-8502, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphene. Science 323, 610–613 (2009).

Wang, X. et al. N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009).

Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

Cai, W. W. et al. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95, 123115 (2009).

Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

Caldwell, J. D. et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4, 1108–1114 (2010).

Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).

Yerushalmi, R., Jacobson, Z. A., Ho, J. C., Fan, Z. & Javey, A. Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91, 203104 (2007).

Chang, Y. K. & Hong, F. C. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Nanotechnology 20, 195302 (2009).

Jo, G. et al. Etching solution for etching Cu and Cu/Ti metal layer of liquid crystal display device and method of fabricating the same. US patent, 6,881,679 (2005).

Hecht, D. S. et al. Carbon nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inf. Display 17, 941–946 (2009).

Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

Hass, J. et al. Why multilayer graphene on 4H-SiC(000–1) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).

Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).

Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

Geng, H.-Z. et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129, 7758–7759 (2007).

Schrivera, M., Reganb, W., Losterb, M. & Zettl, A. Carbon nanostructure–aSi:H photovoltaic cells with high open-circuit voltage fabricated without dopants. Solid State Commun. 150, 561–563 (2010).

Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43–48 (2010).

Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008).

Cao, H. L. et al. Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Appl. Phys. Lett. 96, 122106 (2010).

Cairns, D. R. et al. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76, 1425–1427 (2000).