Roles of thermal energy storage technology for carbon neutrality

Mingyang Sun1, Tianze Liu1, Xinlei Wang1, Tong Liu1, Mulin Li1, Guijun Chen1, Dongyue Jiang2
1Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116024, China
2School of Energy and Power, Dalian University of Technology, Dalian, 116024, People's Republic of China

Tóm tắt

AbstractIn order to achieve global carbon neutrality in the middle of the 21st century, efficient utilization of fossil fuels is highly desired in diverse energy utilization sectors such as industry, transportation, building as well as life science. In the energy utilization infrastructure, about 75% of the fossil fuel consumption is used to provide and maintain heat, leading to more than 60% waste heat of the input energy discharging to the environment. Types of low-grade waste heat recovery technologies are developed to increase the energy efficiency. However, due to the spatial and temporal mismatch between the need and supply of the thermal energy, much of the waste thermal energy is difficult to be recovered. Thermal energy storage (TES) technologies in the forms of sensible, latent and thermochemical heat storage are developed for relieving the mismatched energy supply and demand. Diverse TES systems are developed in recent years with the superior features of large density, long-term, durable and low-cost. These technologies are vital in efficient utilization of low-grade waste heat and expected for building a low or zero carbon emission society. This paper reviews the thermal storage technologies for low carbon power generation, low carbon transportation, low carbon building as well as low carbon life science, in addition, carbon capture, utilization, and storage are also considered for carbon emission reduction. The conclusion and perspective are raised after discussing the specific technologies. This study is expected to provide a reference for the TES technologies in achieving zero-carbon future.

Từ khóa


Tài liệu tham khảo

Sami A. Al-Sanea, Zedan MF, Al-Hussain SN (2012). Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Appl Energy 89(1):430–442. https://doi.org/10.1016/j.apenergy.2011.08.009

Ki-bum Kim, Kyung-wook Choi, Young-jin Kim, Ki-hyung Lee, Kwan-soo Lee (2010). Feasibility study on a novel cooling technique using a phase change material in an automotive engine. Energy 35(1):478–484. https://doi.org/10.1016/j.energy.2009.10.015

Suman Basu, Krishnan S. Hariharan, Subramanya Mayya Kolake, Taewon Song, Dong Kee Sohn, Taejung Yeo (2016). Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system - Science Direct. Appl Energy 181:1–13. https://doi.org/10.1016/j.apenergy.2016.08.049

Abdelhamid ME, O’Mullane AP, Snook GA (2015) Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv 5(15):11611–11626. https://doi.org/10.1039/C4RA15947K

Abdolmaleki L, Sadrameli SM, Pirvaram A (2020) Application of environmental friendly and eutectic phase change materials for the efficiency enhancement of household freezers. Renewable Energy 145:233–241. https://doi.org/10.1016/j.renene.2019.06.035

Abedin A (2011) A critical review of thermochemical energy storage systems. Open Renew Energy J 4. https://doi.org/10.2174/1876387101004010042

Abi Mathew A, Thangavel V (2021) A novel thermal storage integrated evacuated tube heat pipe solar air heater: Energy, exergy, economic and environmental impact analysis. Sol Energy 220:828–842. https://doi.org/10.1016/j.solener.2021.03.057

Adinberg R, Zvegilsky D, Epstein M (2010) Heat transfer efficient thermal energy storage for steam generation. Energy Convers Manage 51(1):9–15. https://doi.org/10.1016/j.enconman.2009.08.006

Afroz HMM, Khan MIH (2013) Effect of Phase Change Material on Performance of a Household Refrigerator. Asian J Appl Sci 6:56–67. https://doi.org/10.3923/ajaps.2013.56.67

Agency IE (2013) Transition to sustainable buildings: strategies and opportunities to 2050, Transition to sustainable buildings: strategies and opportunities to 2050. https://doi.org/10.1787/9789264202955-en

Ahmad H, Hamza A, Ali S (2016) Energy efficiency enhancement of photovoltaics by phase change materials through thermal energy recovery. Energies 9(10):1–15. https://doi.org/10.3390/en9100782

Al-Hallaj S, Kizilel R, Lateef A, Sabbah R, Farid M, Selman JR (2005). Passive thermal management using phase change material (PCM) for EV and HEV Li-ion batteries. 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 2005, pp. 5. https://doi.org/10.1109/VPPC.2005.1554585

Al-Temeemi AA, Harris DJ (2004) A guideline for assessing the suitability of earth-sheltered mass-housing in hot-arid climates. Energy Buildings 36(3):251–260. https://doi.org/10.1016/j.enbuild.2003.12.005

Alva G, Lin Y, Fang G (2018) An overview of thermal energy storage systems. Energy 144:341–378. https://doi.org/10.1016/j.energy.2017.12.037

Andrepont JS (2006) Stratified Low-Temperature Fluid Thermal Energy Storage (TES) in a Major Convention District – Aging Gracefully, as Fine Wine. ASHRAE Trans 112(1):667–675

Arunachalam S (2019) Latent heat storage: container geometry, enhancement techniques, and applications—a review. J Solar Energy Eng 141(5). https://doi.org/10.1115/1.4043126

Ayyappan S, Mayilsamy K, Sreenarayanan VV (2016) Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transf 52(3):459–467. https://doi.org/10.1007/s00231-015-1568-5

Badwal SP, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2:79. https://doi.org/10.3389/fchem.2014.00079

Bagherisereshki E, Tran J, Lei F, Auyeung N (2018) Investigation into SrO/SrCO 3 for high temperature thermochemical energy storage. Sol Energy 160:85–93. https://doi.org/10.1016/j.solener.2017.11.073

Bahnfleth WP, Jing S (2005) Constant flow rate charging characteristics of a full-scale stratified chilled water storage tank with double-ring slotted pipe diffusers. Appl Therm Eng 25(17–18):3067–3082. https://doi.org/10.1016/j.applthermaleng.2005.03.013

Bai F, Chen M, Song W, Feng Z, Li Y, Ding Y (2017) Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Appl Therm Eng 126:17–27. https://doi.org/10.1016/j.applthermaleng.2017.07.141

Bales C, Jaenig D, Gantenbein P, Weber R (2007) Laboratory Prototypes of Thermo-Chemical and Sorption Storage Units: Report B3 of Subtask B. Paris: International Energy Agency, Solar Heating and Cooling Programme

Bauer T, Pfleger N, Breidenbach N, Eck M, Laing D, Kaesche S (2013) Material aspects of Solar Salt for sensible heat storage. Appl Energy 111(Nov):1114–1119. https://doi.org/10.1016/j.apenergy.2013.04.072

Beard and Jonathan (1995) Hot catalysts make for a clean cold start. New Scientist 147(1991):20–20

Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W (2010) Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain Dev 14(4):302–314. https://doi.org/10.1016/j.esd.2010.09.007

Becherif M, Ramadan HS, Cabaret K, Picard F, Simoncini N, Bethoux O (2015) Hydrogen energy storage: new techno-economic emergence solution analysis. Energy Procedia 74:371–380. https://doi.org/10.1016/j.egypro.2015.07.629

Benitez-Guerrero M, Valverde JM, Sanchez-Jimenez PE, Perejon A, Perez-Maqueda LA (2018) Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture. Chem Eng J 334:2343–2355. https://doi.org/10.1016/j.cej.2017.11.183

Besant AG, Hamidi V (2019) Technical challenges in co-location of battery storage and generation plants. J Eng 2019(18):5090–5093. https://doi.org/10.1049/joe.2018.9347

Bissell A, Gataora S, Nicholson J, Doak K (2021) Internally heated phase change material heat batteries, U.S. Patent Application No. 17/263,363

Blakers A, Stocks M, Lu B, Cheng C (2021) A review of pumped hydro energy storage. Progr Energy 3(2):022003. https://doi.org/10.1088/2516-1083/abeb5b

Bloomfield D, Fisk DJ (1977) The optimisation of intermittent heating. Build Environ 12(1):43–55. https://doi.org/10.1016/0360-1323(77)90006-3

Blüher P (1991) Latentwarmespeicher erhht den fahrkomfort und die fahrsicherheit. ATZ Automobiltechnische Zeitschrift 93(10):3–8

Bogdanović B, Reiser A, Schlichte K, Spliethoff B, Tesche B (2002) Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage. J Alloy Compd 345(1):77–89. https://doi.org/10.1016/S0925-8388(02)00308-0

Bohra B, Gawit N, Chavan R, Kapse R (2015) An eco-friendly and reusable heat source for self-heating food packaging. Int J Eng Res V4. https://doi.org/10.17577/IJERTV4IS050462

Boissiere B, Ansart R, Gauthier D, Flamant G, Hemati M (2015) Experimental hydrodynamic study of gas-particle dense suspension upward flow for application as new heat transfer and storage fluid. Can J Chem Eng 93(2):317–330. https://doi.org/10.1002/cjce.22087

Bondarenko VL, Ilyinskaya DN, Kazakova AA, Kozlovtsev PS, Lavrov NA, Razenko EA (2022) Hydrogen Storage. Chem Pet Eng 57(11):1026–1032. https://doi.org/10.1007/s10556-022-01041-z

Bongaarts J (2019) Intergovernmental panel on climate change special report on global warming of 1.5°C Switzerland: IPCC, 2018. Popul Dev Rev 45(1):251–252

Boonnasa S, Namprakai P (2010) The chilled water storage analysis for a university building cooling system. Appl Therm Eng 30(11):1396–1408. https://doi.org/10.1016/j.applthermaleng.2010.02.029

Borissova AV, Popov D (2020). An option for integration of Carnot Battery into a small Nuclear Power Plant. In E3S Web of Conferences Vol. 207, p. 01027. EDP Sciences. https://doi.org/10.1051/e3sconf/202020701027

Budt M, Wolf D, Span R, Yan J (2016) A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl Energy 170:250–268. https://doi.org/10.1016/j.apenergy.2016.02.108

Burch SD, Keyser MA, Colucci CP, Potter TF, Benson DK, Biel JP, Beil JP (1996). Applications and benefits of catalytic converter thermal management. SAE Fuels & Lubricants Spring Meeting, Dearborn. https://doi.org/10.4271/961134

Burch SD, Potter TF, Keyser MA, Brady MJ, Michaels KF. (1995). Reducing cold-start emissions by catalytic converter thermal management. SAE Transactions, 104:348–353. http://www.jstor.org/stable/44615090

Burmistrov I, Khanna R, Gorshkov N, Kiselev N, Artyukhov D, Boychenko E, Yudin A, Konyukhov Y, Kravchenko M, Gorokhovsky A (2022) Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review. Sustainability 14(15):9483. https://doi.org/10.3390/su14159483

Chan CW, Ling-Chin J, Roskilly AP (2013) A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation. Appl Therm Eng 50(1):1257–1273. https://doi.org/10.1016/j.applthermaleng.2012.06.041

Chao J, Xu J, Bai Z, Wang P, Wang R, Li T (2023) Integrated heat and cold storage enabled by high-energy-density sorption thermal battery based on zeolite/MgCl2 composite sorbent. J Energy Storage 64:107155. https://doi.org/10.1016/j.est.2023.107155

Chen J, Wang Y, Ma B, Guan L, Tian Z, Lin K, Zhu Y (2020) Biodegradable hollow mesoporous organosilica-based nanosystems with dual stimuli-responsive drug delivery for efficient tumor inhibition by synergistic chemo- and photothermal therapy. Appl Mater Today 19:100655. https://doi.org/10.1016/j.apmt.2020.100655

Chen L, Zhang L, Yang H, Xie M, Ye K (2022) Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system. Energy 261:125351. https://doi.org/10.1016/j.energy.2022.125351

Chen X, Jin X, Ling X, Wang Y (2020) Exergy analysis of concentrated solar power plants with thermochemical energy storage based on calcium looping. ACS Sustainable Chem. Eng. 8:7928–41. https://doi.org/10.1021/acssuschemeng.0c01586

Chen Y, Zang B (2022) Analysis of alternating flux density harmonics inside the rotor of a 1 MW high-speed interior permanent magnet synchronous machine used for flywheel energy storage systems. J Energy Storage 55:105664. https://doi.org/10.1016/j.est.2022.105664

Choudhari MS, Sharma VK, Paswan M (2021) Metal hydrides for thermochemical energy storage applications. Int J Energy Res 45(10):14465–14492. https://doi.org/10.1002/er.6818

Choudhury S (2021) Flywheel energy storage systems: A critical review on technologies, applications, and future prospects. Int Transact Electr Energy Syst 31(9):e13024. https://doi.org/10.1002/2050-7038.13024

Cooper C, Sovacool BK (2013) Miracle or mirage? The promise and peril of desert energy part 1. Renewable Energy 50:820–825. https://doi.org/10.1016/j.renene.2012.07.027

D’Ans P, Courbon E, Permyakova A, Nouar F, Simonnet-Jégat C, Bourdreux F, Malet L, Serre C, Frère M, Steunou N (2019) A new strontium bromide MOF composite with improved performance for solar energy storage application. Journal of Energy Storage 25:100881. https://doi.org/10.1016/j.est.2019.100881

Dahariya S, Patel N, Egbo MK, Hwang G, Betz AR (2020) High-Pressure Pool-Boiling Heat Transfer Enhancement Mechanism on Sintered-Particle Wick Surface. Front Mech Engineering 5. https://doi.org/10.3389/fmech.2019.00071

Dannemand M, Dragsted J, Fan J, Johansen JB, Kong W, Furbo S (2016) Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures. Appl Energy 169:72–80. https://doi.org/10.1016/j.apenergy.2016.02.038

Darkwa K, O’Callaghan PW (1997) Green transport technology (GTT): Analytical studies of a thermochemical store for minimising energy consumption and air pollution from automobile engines. Appl Therm Eng 17(7):603–614. https://doi.org/10.1016/S1359-4311(97)80001-4

Davidson JH, Quinnell J, Burch J, Zondag HA, Boer RD, Finck CJ, Cuypers R, Cabeza LF, Heinz A, Jahnig D (2013). Development of space heating and domestic hot water systems with compact thermal energy storage. Compact thermal energy storage: Material development for System Integration. Iea Solar Heating and Cooling

de Boer R, Haije WG, Veldhuis JBJ (2002) Determination of structural, thermodynamic and phase properties in the Na2S–H2O system for application in a chemical heat pump. Thermochim Acta 395(1):3–19. https://doi.org/10.1016/S0040-6031(02)00158-2

de Gracia A, Navarro L, Castell A, Ruiz-Pardo Á, Álvarez S, Cabeza LF (2013) Thermal analysis of a ventilated facade with PCM for cooling applications. Energy Buildings 65:508–515. https://doi.org/10.1016/j.enbuild.2013.06.032

De RK, Ganguly A (2020) Performance comparison of solar-driven single and double-effect LiBr-water vapor absorption system based cold storage. Thermal Sci Eng Progr 17:100488. https://doi.org/10.1016/j.tsep.2020.100488

Deng Y, Jiang Y, Liu J (2021) Liquid metal technology in solar power generation - Basics and applications. Sol Energy Mater Sol Cells 222:110925. https://doi.org/10.1016/j.solmat.2020.110925

Dharuman C, Arakeri JH, Srinivasan K (2006) Performance evaluation of an integrated solar water heater as an option for building energy conservation. Energy Buildings 38(3):214–219. https://doi.org/10.1016/j.enbuild.2005.05.007

Di Lauro F, Tregambi C, Montagnaro F, Salatino P, Chirone R, Solimene R (2021) Improving the performance of calcium looping for solar thermochemical energy storage and CO2 capture. Fuel 298:120791. https://doi.org/10.1016/j.fuel.2021.120791

Díaz-Heras M, Calderón A, Navarro M, Almendros-Ibáñez JA, Fernández AI, Barreneche C (2021) Characterization and testing of solid particles to be used in CSP plants: Aging and fluidization tests. Solar Energy Mater Solar Cells 219:110793. https://doi.org/10.1016/j.solmat.2020.110793

Díaz-Heras M, Moya JD, Belmonte JF, Córcoles-Tendero JI, Molina AE, Almendros-Ibáñez JA (2020) CSP on fluidized particles with a beam-down reflector: Comparative study of different fluidization technologies. Sol Energy 200:76–88. https://doi.org/10.1016/j.solener.2019.09.006

Ding B, Xu C, Liao Z, Ye F (2021) Study on long-term thermochemical thermal storage performance based on SrBr 2-expanded vermiculite composite materials. J Energy Storage 42:103081. https://doi.org/10.1016/j.est.2021.103081

Ding W, Bauer T (2021) Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering 7(3):334–347. https://doi.org/10.1016/j.eng.2020.06.027

Dirand M, Bouroukba M, Briard A-J, Chevallier V, Petitjean D, Corriou J-P (2002) Temperatures and enthalpies of (solid + solid) and (solid + liquid) transitions of n-alkanes. J Chem Thermodyn 34(8):1255–1277. https://doi.org/10.1006/jcht.2002.0978

Donkers PAJ, Pel L, Adan OCG (2016) Experimental studies for the cyclability of salt hydrates for thermochemical heat storage. J Energy Storage 5:25–32. https://doi.org/10.1016/j.est.2015.11.005

Dumont O, Frate GF, Pillai A, Lecompte S, De Paepe M, Lemort V (2020) Carnot battery technology: A state-of-the-art review. J Energy Storage 32:101756. https://doi.org/10.1016/j.est.2020.101756

Dunn R, Lovegrove K, Burgess G (2012) A review of ammonia-based thermochemical energy storage for concentrating solar power. Proc IEEE 100(2):391–400. https://doi.org/10.1109/JPROC.2011.2166529

Dunn RI, Hearps PJ, Wright MN (2012) Molten-salt power towers: newly commercial concentrating solar storage. Proc- IEEE 100(2):504–515. https://doi.org/10.1109/JPROC.2011.2163739

Dzekan D, Waske A, Nielsch K, Fähler S (2021) Efficient and affordable thermomagnetic materials for harvesting low grade waste heat. APL Mater 9(1):011105. https://doi.org/10.1063/5.0033970

Einstein P (2015). Effective Integration of Seasonal Thermal Energy Storage Systems in existing buildings. European Project 2015. www.einstein-project.eu

Elfeky KE, Ahmed N, Wang Q (2018). Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants. Appl Thermal Eng 139:609–622. https://doi.org/10.1016/j.applthermaleng.2018.04.122

Englmair G, Moser C, Schranzhofer H, Fan J, Furbo S (2019) A solar combi-system utilizing stable supercooling of sodium acetate trihydrate for heat storage: Numerical performance investigation. Appl Energy 242:1108–1120. https://doi.org/10.1016/j.apenergy.2019.03.125

Ervin G (1977) Solar heat storage using chemical reactions. J Solid State Chem 22(1):51–61. https://doi.org/10.1016/0022-4596(77)90188-8

Fang ZZ, Zhou C, Fan P, Udell KS, Bowman RC, Vajo JJ et al (2015) Metal hydrides based high energy density thermal battery. J Alloys Compd 645:S184–189. https://doi.org/10.1016/j.jallcom.2014.12.260

Feng PH, Zhao BC, Wang RZ (2020) Thermophysical heat storage for cooling, heating, and power generation: A review. Appl Thermal Eng 166:114728. https://doi.org/10.1016/j.applthermaleng.2019.114728

Ferone C, Colangelo F, Frattini D, Roviello G, Cioffi R, Maggio RD (2014) Finite element method modeling of sensible heat thermal energy storage with innovative concretes and comparative analysis with literature benchmarks. Energies 7(8):5291–5316. https://doi.org/10.3390/en7085291

Figgener J, Stenzel P, Kairies K-P, Linßen J, Haberschusz D, Wessels O, Robinius M, Stolten D, Sauer DU (2021) The development of stationary battery storage systems in Germany – status 2020. J Energy Storage 33:101982. https://doi.org/10.1016/j.est.2020.101982

Fopah Lele A, Kuznik F, Rammelberg HU, Schmidt T, Ruck WKL (2015) Thermal decomposition kinetic of salt hydrates for heat storage systems. Appl Energy 154:447–458. https://doi.org/10.1016/j.apenergy.2015.02.011

Fumey B, Weber R, Baldini L (2017) Liquid sorption heat storage – A proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design. Appl Energy 200:215–225. https://doi.org/10.1016/j.apenergy.2017.05.056

Furbo S (2015). Using water for heat storage in thermal energy storage (TES) systems. Advances in thermal energy storage systems, Elsevier: 31–47. https://doi.org/10.1533/9781782420965.1.31

Galione PA, Pérez-Segarra CD, Rodríguez I, Torras S, Rigola J (2015) Multi-layered solid-PCM thermocline thermal storage for CSP. Numerical evaluation of its application in a 50MWe plant. Sol Energy 119:134–150. https://doi.org/10.1016/j.solener.2015.06.029

Gao JT, Xu ZY, Wang RZ (2020) Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density. Appl Energy 262:114476. https://doi.org/10.1016/j.apenergy.2019.114476

Gao W, Wenxian L, Liu T, Xia C (2007) An Experimental Study on the Heat Storage Performances of Polyalcohols NPG, TAM, PE, and AMPD and their Mixtures as Solid-Solid Phase-Change Materials for Solar Energy Applications. Int J Green Energy 4:301–311. https://doi.org/10.1080/15435070701332112

Gardner S (2016) European commission calls for prioritizing heating, cooling efficiency measures. international environment. Reporter 39(4):216–217

Gbenou TRS, Fopah-Lele A, Wang K (2021) Recent Status and Prospects on Thermochemical Heat Storage Processes and Applications. Entropy 23(8):953. https://doi.org/10.3390/e23080953

Giap V-T, Lee YD, Kim YS, Ahn KY (2020) A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam. Appl Energy 262:114522. https://doi.org/10.1016/j.apenergy.2020.114522

Glasser L (2014) Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs. J Chem Eng Data 59:526–530. https://doi.org/10.1021/je401077x

Glasser L, Jenkins HDB (2007) The thermodynamic solvate difference rule: solvation parameters and their use in interpretation of the role of bound solvent in condensed-phase solvates. Inorg Chem 46(23):9768–9778. https://doi.org/10.1021/ic701105p

Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2014) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43. https://doi.org/10.1016/j.jpowsour.2013.08.135

Gomez JC (2011). High-temperature phase change materials (PCM) candidates for thermal energy storage (TES) applications, National Renewable Energy Lab.(NREL), Golden, CO (United States). NREL/TP-5500-51446

González-Roubaud E, Pérez-Osorio D, Prieto C (2017) Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew Sustain Energy Rev 80:133–148. https://doi.org/10.1016/j.rser.2017.05.084

Gude VG (2015) Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl Energy 137:877–898. https://doi.org/10.1016/j.apenergy.2014.06.061

Guillot S, Faik A, Rakhmatullin A, Lambert J, Veron E, Echegut P, Bessada C, Calvet N, Py X (2012) Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl Energy 94:174–181. https://doi.org/10.1016/j.apenergy.2011.12.057

Gumus M (2009) Reducing cold-start emission from internal combustion engines by means of thermal energy storage system. Appl Therm Eng 29(4):652–660. https://doi.org/10.1016/j.applthermaleng.2008.03.044

Guo J, Cai L, Chen J, Zhou Y (2016) Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system. Energy 113:693–701. https://doi.org/10.1016/j.energy.2016.07.080

Guo P, Wang Y, Li J, Yuan W (2016) Thermodynamic analysis of a solar chimney power plant system with soil heat storage. Appl Therm Eng 100:1076–1084. https://doi.org/10.1016/j.applthermaleng.2016.03.008

Hadden T. (2017). Thermal storage for electric vehicle cabin heating in cold weather conditions. Hamilton, Ontario, Canada

Han R, Gao J, Wei S, Su Y, Su C, Li J, Liu Q, Qin Y (2020) High-performance CaO-based composites synthesized using a space-confined chemical vapor deposition strategy for thermochemical energy storage. Solar Energy Mater Solar Cells 206:110346. https://doi.org/10.1016/j.solmat.2019.110346

Han YM, Wang RZ, Dai YJ (2009) Thermal stratification within the water tank. Renew Sustain Energy Rev 13(5):1014–1026. https://doi.org/10.1016/j.rser.2008.03.001

Hasnain SM (1998) Review on sustainable thermal energy storage technologies, Part II: cool thermal storage. Energy Convers Manage 39(11):1139–1153. https://doi.org/10.1016/S0196-8904(98)00024-7

Hasnain SM (1998) Review on sustainable thermal energy storage technologies, Part I: Heat Storage Materials and techniques. Energy Convers Manage 39(11):1127–1138. https://doi.org/10.1016/S0196-8904(98)00025-9

Hauer, A. (2007). ADSORPTION SYSTEMS FOR TES—DESIGN AND DEMONSTRATION PROJECTS. In: Paksoy, H.Ö. (eds) Thermal Energy Storage for Sustainable Energy Consumption. NATO Science Series, vol 234. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5290-3_25

He D-H, Di Y-Y, Tan Z-C, Yi F-F, Dan W-Y, Liu Y-P (2011) Crystal structures and thermochemistry on phase change materials (n-CnH2n+1NH3)2CuCl4(s) (n=14 and 15). Sol Energy Mater Sol Cells 95(10):2897–2906. https://doi.org/10.1016/j.solmat.2011.06.014

Hed G, Bellander R (2006) Mathematical modelling of PCM air heat exchanger. Energy Buildings 38(2):82–89. https://doi.org/10.1016/j.enbuild.2005.04.002

Helaly H, El-Sharkawy I, Kandel A, Awad M (2020) A study on thermal energy storage using open adsorption system. Bull Faculty Eng Mansoura University. 43:34–43

Hemmatian B, Heidarzadeh N, Fard GC, Maleknia L (2020) Fabrication of phase-change core/shell nanofibers based on a eutectic fatty acid mixture to control body temperature fluctuations. Mater Chem Phys 245:122738. https://doi.org/10.1016/j.matchemphys.2020.122738

Henninger S, Habib H (2009) MOFs as Adsorbents for Low Temperature Heating and Cooling Applications. J Am Chem Soc 131:2776–2777. https://doi.org/10.1021/ja808444z

Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29(5–6):883–893. https://doi.org/10.1016/S0360-5442(03)00193-2

Hong S, Zhang X, Kai C, Wang S (2018) Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. Int J Heat Mass Transfer 116:1204–1212. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.092

Hongois S (2011) Inter-seasonal thermal energy storage based on a thermochemical process for solar space heating of single-family houses

Stockage de chaleur inter-saisonnier par voie thermochimique pour le chauffage solaire de la maison individuelle, INSA de Lyon

Hoshi A, Mills DR, Bittar A, Saitoh TS (2005) Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol Energy 79(3):332–339. https://doi.org/10.1016/j.solener.2004.04.023

Huang C, Wang Q, Rao Z (2015) Thermal conductivity prediction of copper hollow nanowire. Int J Therm Sci 94:90–95. https://doi.org/10.1016/j.ijthermalsci.2015.02.017

Hui L, Edem NTK, Nolwenn LP, Lingai L (2011) Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energy Convers Manage 52(6):2427–2436. https://doi.org/10.1016/j.enconman.2010.12.049

Hunt JD, Zakeri B, Lopes R, Barbosa PSF, Nascimento A, N. J. d. Castro, R. Brandão, P. S. Schneider and Y. Wada, (2020) Existing and new arrangements of pumped-hydro storage plants. Renewable Sustain Energy Rev 129:109914. https://doi.org/10.1016/j.rser.2020.109914

Huo D, Tian H, Shu G, Wang W (2022) Progress and prospects for low-grade heat recovery electrochemical technologies. Sustain Energy Technol Assessments 49:101802. https://doi.org/10.1016/j.seta.2021.101802

International Energy Agency I.E.A (2019). Energy Efficiency:buildings.The global exchange for energy efficiency policies,data and analysis. https://www.iea.org/topics/energyefficiency/buildings/

Incropera FP and Dewitt DP (2002). Software tools and user's guides to accompany Fundamentals of heat and mass transfer, & Introduction to heat transfer, 5th edition & Introduction to heat transfer, 4th edition

Ismail MS, Moghavvemi M, Mahlia TMI, Muttaqi KM, Moghavvemi S (2015) Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis. Renew Sustain Energy Rev 42:726–734. https://doi.org/10.1016/j.rser.2014.10.051

Janssen NT, Peterson RA, Wies RW (2017) Generalized heat flow model of a forced air electric thermal storage heater core. J Thermal Sci Eng Appl 9(4):041008. https://doi.org/10.1115/1.4036366

Jemmal Y, Zari N, Maaroufi M (2017) Experimental characterization of siliceous rocks to be used as filler materials for air-rock packed beds thermal energy storage systems in concentrated solar power plants. Sol Energy Mater Sol Cells 171:33–42. https://doi.org/10.1016/j.solmat.2017.06.026

Ji Y, Wang CY (2013) Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochim Acta 107:664–674. https://doi.org/10.1016/j.electacta.2013.03.147

Jian X, Lan C, Yu Q, Ma Y (2017) Prevent Thermal Runaway of Lithium-Ion Batteries with Minichannel Cooling. Appl Therm Eng 110:883–890. https://doi.org/10.1016/j.applthermaleng.2016.08.151

Jiang G, Huang J, Liu M, Cao M (2017) Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material. Appl Therm Eng 120:1–9. https://doi.org/10.1016/j.applthermaleng.2017.03.107

Jiang K, Du X, Kong Y, Xu C, Ju X (2019) A comprehensive review on solid particle receivers of concentrated solar power. Renew Sustain Energy Rev 116:109463. https://doi.org/10.1016/j.rser.2019.109463

Johannes K, Kuznik F, Hubert J-L, Durier F, Obrecht C (2015) Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl Energy 159:80–86. https://doi.org/10.1016/j.apenergy.2015.08.109

John E, Hale M, Selvam P (2013) Concrete as a thermal energy storage medium for thermocline solar energy storage systems. Sol Energy 96:194–204. https://doi.org/10.1016/j.solener.2013.06.033

Jung W, Park J, Won W, Lee KS (2018) Simulated moving bed adsorption process based on a polyethylenimine-silica sorbent for CO2 capture with sensible heat recovery. Energy 150:950–964. https://doi.org/10.1016/j.energy.2018.03.022

Darkwa K (1998) Thermochemical energy storage in inorganic oxides: An experimental evaluation. Appl Thermal Eng 18(6):387–400. https://doi.org/10.1016/S1359-4311(97)00052-5

Kant K, Shukla A, Smeulders DMJ, Rindt CCM (2021) Performance analysis of a K2CO3-based thermochemical energy storage system using a honeycomb structured heat exchanger. J Energy Storage 38:102563. https://doi.org/10.1016/j.est.2021.102563

Karlsson J, Wads L, Berg M (2013) A conceptual model that simulates the influence of thermal inertia in building structures. Energy Buildings 60(60):146–151. https://doi.org/10.1016/j.enbuild.2013.01.017

Karthick A, Murugavel KK, Sudalaiyandi K, Manokar AM (2020) Building integrated photovoltaic modules and the integration of phase change materials for equatorial applications. Build Serv Eng Res Technol 41(5):634–652. https://doi.org/10.1177/0143624419883

Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11(9):1913–1965. https://doi.org/10.1016/j.rser.2006.05.005

Kenisarin M, Mahkamov K (2016) Passive thermal control in residential buildings using phase change materials. Renew Sustain Energy Rev 55:371–398. https://doi.org/10.1016/j.rser.2015.10.128

Kenisarin MM (2010) High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 14(3):955–970. https://doi.org/10.1016/j.rser.2009.11.011

Kenisarin MM (2014) Thermophysical properties of some organic phase change materials for latent heat storage. A review Solar Energy 107:553–575. https://doi.org/10.1016/j.solener.2014.05.001

Khalifa A, Suffer KH, Mahmoud MS (2013) A storage domestic solar hot water system with a back layer of phase change material. Exp Thermal Fluid Sci 44:174–181. https://doi.org/10.1016/j.expthermflusci.2012.05.017

Khare S, Dell’Amico M, Knight C, McGarry S (2012) Selection of materials for high temperature latent heat energy storage. Sol Energy Mater Sol Cells 107:20–27. https://doi.org/10.1016/j.solmat.2012.07.020

Khatod KJ, Katekar VP, Deshmukh SS (2022) An evaluation for the optimal sensible heat storage material for maximizing solar still productivity: A state-of-the-art review. J Energy Storage 50:104622. https://doi.org/10.1016/j.est.2022.104622

Kibria MA, Saidur R, Al-Sulaiman FA, Aziz M (2016) Development of a thermal model for a hybrid photovoltaic module and phase change materials storage integrated in buildings. Sol Energy 124:114–123. https://doi.org/10.1016/j.solener.2015.11.027

Kipouros G, Sadoway D (1987) The chemistry and electrochemistry of magnesium production. Adv Molten Salt Chem 6:127–209

Konyk A, Demchenko V (2021) Integration of Heat Storage Technologies in District Heating Systems. Rocznik Ochrona Środowiska 23:493–502. https://doi.org/10.54740/ros.2021.034

Kuitunen S, Ivi F (2018). 7th International Conference Thermal Management for EV/HEV, Berlin Thermal storage based heating system for full electric city buses. https://doi.org/10.13140/RG.2.2.24919.57766

Laing D, Bahl C, Bauer T, Fiss M, Breidenbach N, Hempel M (2012) High-Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants. Proc IEEE 100(2):516–524. https://doi.org/10.1109/JPROC.2011.2154290

Laing D, Bauer T, Steinmann W.-D, Lehmann D (2009). Advanced high temperature latent heat storage system-design and test results. In: The 11th international conference on thermal energy storage - Effstock 2009: Stockholm, Sweden; 2009

Laing D, Zunft S. (2015). Using concrete and other solid storage media in thermal energy storage (TES) systems. Advances in Thermal Energy Storage Systems. Woodhead Publishing, pp 65–86. https://doi.org/10.1533/9781782420965.1.65

Lajunen A, Hadden T, Hirmiz R, Cotton J, Emadi A (2017). Thermal energy storage for increasing heating performance and efficiency in electric vehicles. In 2017 IEEE Transportation Electrification Conference and Expo (ITEC) (pp. 95-100). IEEE. https://doi.org/10.1109/ITEC.2017.7993253

Lamensdorf M (1997). Flameless heater and method of making same. U.S. Patent No. 5,611,329. Washington, DC: U.S. Patent and Trademark Office

Lavine AS, Lovegrove KM, Jordan J, Anleu GB, Chen C, Aryafar H, Sepulveda A (2016) Thermochemical energy storage with ammonia: Aiming for the sunshot cost target. AIP Conference Proc 1734(1):050028. https://doi.org/10.1063/1.4949126

Lebedev VA, Amer AE (2019) Limitations of using phase change materials for thermal energy storage. IOP Confer Ser: Earth Environ Sci 378(1):012044. https://doi.org/10.1088/1755-1315/378/1/012044

Li B, Li Y, Dou Y, Wang Y, Zhao J, Wang T (2021) SiC/Mn co-doped CaO pellets with enhanced optical and thermal properties for calcium looping thermochemical heat storage. Chem Eng J 423:130305. https://doi.org/10.1016/j.cej.2021.130305

Li G, Zhang B, Li X, Zhou Y, Sun Q, Yun Q (2014) The preparation, characterization and modification of a new phase change material: CaCl2· 6H2O–MgCl2· 6H2O eutectic hydrate salt. Sol Energy Mater Sol Cells 126:51–55. https://doi.org/10.1016/j.solmat.2014.03.031

Li P, Molina E, Wang K, Xu X, Dehghani G, Kohli A, Hao Q, Kassaee MH, Jeter SM, Teja AS (2016). Thermal and Transport Properties of NaCl–KCl–ZnCl2 Eutectic Salts for New Generation High-Temperature Heat-Transfer Fluids. J Solar Energy Eng 138(5). https://doi.org/10.1115/1.4033793

Li S, Lin S, Ling Z, Fang X, Zhang Z (2020) Growth of the phase change enthalpy induced by the crystal transformation of an inorganic–organic eutectic mixture of magnesium nitrate hexahydrate–glutaric acid. Ind Eng Chem Res 59(14):6751–6760. https://doi.org/10.1021/acs.iecr.0c01029

Li W, Zhang L, Ling X (2023) Thermo-economic assessment of salt hydrate-based thermochemical heat transformer system: Heat upgrade for matching domestic hot water production. Energy Convers Manage 277:116644. https://doi.org/10.1016/j.enconman.2022.116644

Li WQ, Qu ZG, He YL, Tao YB (2014) Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J Power Sources 255:9–15. https://doi.org/10.1016/j.jpowsour.2014.01.006

Li X, Palazzolo A (2022) A review of flywheel energy storage systems: state of the art and opportunities. J Energy Storage 46:103576. https://doi.org/10.1016/j.est.2021.103576

Li X, Wang Z, Xu E, Ma L, Xu L, Zhao D (2019) Dynamically coupled operation of two-tank indirect TES and steam generation system. Energies 12(9):1720. https://doi.org/10.3390/en12091720

Li X, Zhang J, Liu Y, Xu Y, Cui K, Yao Z, Fu B, Song C, Shang W, Tao P, Deng T (2023) Supercooled sugar alcohols stabilized by alkali hydroxides for long-term room-temperature phase change solar-thermal energy storage. Chem Eng J 452:139328. https://doi.org/10.1016/j.cej.2022.139328

Liang T, Vecchi A, Knobloch K, Sciacovelli A, Engelbrecht K, Li Y, Ding Y (2022) Key components for Carnot Battery: Technology review, technical barriers and selection criteria. Renew Sustain Energy Rev 163:112478. https://doi.org/10.1016/j.rser.2022.112478

Ling Z, Zhang Z, Shi G, Fang X, Lei W, Gao X, Fang Y, Tao X, Wang S, Liu X (2014) Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sustain Energy Rev 31:427–438. https://doi.org/10.1016/j.rser.2013.12.017

Liu H, Zhou F, Shi X, Sun K, Kou Y, Das P, Li Y, Zhang X, Mateti S, Chen Y, Wu Z-S, Shi Q (2023) A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Letters 15(1):29. https://doi.org/10.1007/s40820-022-00991-6

Liu J, Baeyens J, Deng Y, Wang X, Zhang H (2020) High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage. J Environ Manage 267:110582. https://doi.org/10.1016/j.jenvman.2020.110582

Liu J, Chang Z, Wang L, Xu J, Kuang R, Wu Z (2020) Exploration of basalt glasses as high-temperature sensible heat storage materials. ACS Omega 5:19236–19246. https://doi.org/10.1021/acsomega.0c02773

Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16(4):2118–2132. https://doi.org/10.1016/j.rser.2012.01.020

Luo J, Ma X (2022) An integrated strategy for the improvement of thermo-economic performance of a GWHP system. Appl Thermal Eng 213:118777. https://doi.org/10.1016/j.applthermaleng.2022.118777

Ma T, Yang H, Zhang Y, Lu L, Wang X (2015) Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renew Sustain Energy Rev 43:1273–1284. https://doi.org/10.1016/j.rser.2014.12.003

Mahfuz M, Anisur M, Kibria M, Saidur R, Metselaar I (2014) Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application. Int Commun Heat Mass Transfer 57:132–139. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.022

Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545. https://doi.org/10.1016/j.rser.2014.01.068

Malvi C, Dixon-Hardy D, Crook R (2011) Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material. Sol Energy 85(7):1440–1446. https://doi.org/10.1016/j.solener.2011.03.027

Mcb A, Bn B, Mc A (2016) Heat retention of a photovoltaic/thermal collector with PCM - ScienceDirect. Sol Energy 133:533–548. https://doi.org/10.1016/j.solener.2016.04.024

Mehling H, Cabeza LF (2008). Heat and cold storage with PCM an up to date introduction into basics and applications. Heat and Mass Transfer. Springer

Mehrali M, Latibari ST, Rosen MA, Akhiani AR, Naghavi MS, Sadeghinezhad E, Metselaar HSC, Nejad MM, Mehrali M (2016) From rice husk to high performance shape stabilized phase change materials for thermal energy storage. RSC Adv 6(51):45595–45604. https://doi.org/10.1039/C6RA03721F

Meier A, Bonaldi E, Cella GM, Lipinski W, Wuillemin D, Palumbo R (2004) Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy 29(5/6):811–821. https://doi.org/10.1016/S0360-5442(03)00187-7

Meister C, Beausoleil-Morrison I (2021) Experimental and modelled performance of a building-scale solar thermal system with seasonal storage water tank. Sol Energy 222:145–159. https://doi.org/10.1016/j.solener.2021.05.025

Mellouli S, Askri F, Edacherian A, Alqahtani T, Algarni S, Abdelmajid J, Phelan P (2018) Performance analysis of a thermal energy storage system based on paired metal hydrides for concentrating solar power plants. Appl Therm Eng 144:1017–1029. https://doi.org/10.1016/j.applthermaleng.2018.09.014

Memon, Ali S (2014) Phase change materials integrated in building walls: A state of the art review. Renew Sustain Energy Rev 31(Complete):870–906. https://doi.org/10.1016/j.rser.2013.12.042

Menéndez RP, Martínez JÁ, Prieto MJ, Barcia LÁ, Sánchez JMM (2014) A novel modeling of molten-salt heat storage systems in thermal solar power plants. Energies 7(10):6721–6740. https://doi.org/10.3390/en7106721

Mi X, Ran L, Cui H, Memon SA, Lo Y (2016) Energy and economic analysis of building integrated with PCM in different cities of China. Appl Energy 175:324–336. https://doi.org/10.1016/j.apenergy.2016.05.032

Miao Q, Zhang Y, Jia X, Li Z, Tan L, Ding Y (2021) MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage. Sol Energy 220:432–439. https://doi.org/10.1016/j.solener.2021.03.008

Mmia B, Akp A, Mh A, Nara C (2016) Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems - ScienceDirect. Energy Convers Manage 126:177–204. https://doi.org/10.1016/j.enconman.2016.07.075

Mohamed H, Brahim AB (2017) Modeling of the absorption phase of a cycle with solar absorption using the couple NH3–H2O for in-sight energy storage. Int J Hydrogen Energy 42(13):8624–8630. https://doi.org/10.1016/j.ijhydene.2016.06.183

Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yılbaş BS, Sahin AZ (2017) A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 70:1072–1089. https://doi.org/10.1016/j.rser.2016.12.012

Møller KT, Sheppard D, Ravnsbæk DB, Buckley CE, Akiba E, Li H-W, Jensen TR (2017) Complex Metal Hydrides for Hydrogen. Thermal Electrochem Energy Storage Energies 10(10):1645. https://doi.org/10.1016/j.ijhydene.2018.11.208

Mu S-Y, Guo J, Gong Y-M, Zhang S, Yu Y (2015) Synthesis and thermal properties of poly(styrene-co-acrylonitrile)-graft-polyethylene glycol copolymers as novel solid–solid phase change materials for thermal energy storage. Chin Chem Lett 26(11):1364–1366. https://doi.org/10.1016/j.cclet.2015.07.013

Murali G, Rama Krishna Reddy K, Sai Kumar MT, Sai Manikanta J, Nitish Kumar Reddy V (2020) Performance of solar aluminium can air heater using sensible heat storage. Mater Today: Proc 21:169–174. https://doi.org/10.1016/j.matpr.2019.04.213

N’Tsoukpoe KE, Liu H, Pierres NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13(9):2385–2396. https://doi.org/10.1016/j.rser.2009.05.008

Najafian A, Haghighat F, Moreau A (2015) Integration of PCM in domestic hot water tanks: Optimization for shifting peak demand. Energy Build 106:59–64. https://doi.org/10.1016/j.enbuild.2015.05.036

Narayanan S, Li X, Yang S, Kim H, Umans A, McKay IS, Wang EN (2015) Thermal battery for portable climate control. Appl Energy 149:104–116. https://doi.org/10.1016/j.apenergy.2015.03.101

Neelam K, Meeta S, Onkar S, Anoop Kumar S (2022) Comparative investigation on two tank and cascade thermal storage for solar power plants. J Phys: Confer Ser 2178(1):012013. https://doi.org/10.1088/1742-6596/2178/1/012013

Nie B, Palacios A, Zou B, Liu J, Zhang T, Li Y (2020) Review on phase change materials for cold thermal energy storage applications. Renew Sustain Energy Rev 134:110340. https://doi.org/10.1016/j.rser.2020.110340

Nishioka K, Suura N, Ohno K-I, Maeda T, Shimizu M (2010) Development of Fe Base Phase Change Materials for High Temperature Using Solid-Solid Transformation. ISIJ Int 50:1240–1244. https://doi.org/10.2355/isijinternational.50.1240

Nomura T, Akiyama T (2017) High-temperature latent heat storage technology to utilize exergy of solar heat and industrial exhaust heat. Int J Energy Res 41(2):240–251.  https://doi.org/10.1002/er.3611

Ogoli DM (2003) Predicting indoor temperatures in closed buildings with high thermal mass. Energy Buildings 35(9):851–862. https://doi.org/10.1016/S0378-7788(02)00246-3

Olivkar PR, Katekar VP, Deshmukh SS, Palatkar SV (2022) Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review. Renew Sustain Energy Rev 157:112085. https://doi.org/10.1016/j.rser.2022.112085

Oskouee SS, Kamali S, Amraee T (2021) Primary frequency support in unit commitment using a multi-area frequency model with flywheel energy storage. IEEE Trans Power Syst 36(6):5105–5119. https://doi.org/10.1109/TPWRS.2021.3074634

Osuna R, Fernandez V, Romero M, Blanco M (2000). PS10: A 10 MW solar tower power plant for southern Spain[J]. Energy, 2000:386-393

Ouchani F-Z, Jbaihi O, Alami Merrouni A, Ghennioui A, Maaroufi M (2022) Geographic Information System-based Multi-Criteria Decision-Making analysis for assessing prospective locations of Pumped Hydro Energy Storage plants in Morocco: Towards efficient management of variable renewables. J Energy Storage 55:105751. https://doi.org/10.1016/j.est.2022.105751

Palacios A, Barreneche C, Navarro ME, Ding Y (2020) Thermal energy storage technologies for concentrated solar power – A review from a materials perspective. Renewable Energy 156:1244–1265. https://doi.org/10.1016/j.renene.2019.10.127

Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fowler M (2017) Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl Therm Eng 122:80–90. https://doi.org/10.1016/j.applthermaleng.2017.05.010

Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P (2014) A review on high temperature thermochemical heat energy storage. Renew Sustain Energy Rev 32:591–610. https://doi.org/10.1016/j.rser.2013.12.014

Park JH, Lee J, Wi S, Jeon J, Chang SJ, Chang JD, Kim S (2019) Optimization of phase change materials to improve energy performance within thermal comfort range in the South Korean climate. Energy Buildings 185:12–25. https://doi.org/10.1016/j.enbuild.2018.12.013

Pesaran A (2001) Battery Thermal Management in EVs and HEVs: Issues and Solutions. Battery Man, 43(5):34–49

Pickard DW, Trottier RL, Lavigne PG (1994) Self-heating group meal assembly and method of using same, U.S. Patent No. 5,355,869. Washington, DC: Patent and Trademark Office

Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005

Power R (2010). ADELE–adiabatic compressed air energy storage for electricity supply. RWE Power AG, Essen/Koln 141

Prah B, Yun R (2017) Heat Transfer and Flow Characteristics of CO2-Hydrate Mixture in Pipeline. Energy Procedia 114:6813–6823. https://doi.org/10.1016/j.egypro.2017.03.1811

Prieto C, Cabeza LF (2019) Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl Energy 254:113646. https://doi.org/10.1016/j.apenergy.2019.113646

Quéré CL, Andrew RM, Friedlingstein P, Sitch S, Hauck J (2018) Global Carbon Budget 2018. Earth Syst Sci Data 10(4):2141–2194. https://doi.org/10.5194/essd-10-2141-2018

Quoilin S, Broek MVD, Declaye S, Dewallef P, Lemort V (2013) Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew Sustain Energy Rev 22:168–186. https://doi.org/10.1016/j.rser.2013.01.028

Raab S, Mangold D, Müller-Steinhagen H (2005) Validation of a computer model for solar assisted district heating systems with seasonal hot water heat store. Sol Energy 79(5):531–543. https://doi.org/10.1016/j.solener.2004.10.014

Radouane N (2022) A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications. Energies 15(21):8271. https://doi.org/10.3390/en15218271

Radziemska E (2003) The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy 28(1):1–12. https://doi.org/10.1016/S0960-1481(02)00015-0

Rahman MA, Kim J-H, Hossain S (2022) Recent advances of energy storage technologies for grid: A comprehensive review. Energy Storage 4(6):e322. https://doi.org/10.1002/est2.322

Ramakrishnan S, Wang X, Sanjayan J, Wilson J (2017) Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Appl Energy 194(MAY15):410–421. https://doi.org/10.1016/j.apenergy.2016.04.084

Ramanathan K, West DH, Balakotaiah V (2004) Optimal design of catalytic converters for minimizing cold-start emissions. Catal Today 98(3):357–373. https://doi.org/10.1016/j.cattod.2004.08.003

Rao Z, Zhen Q, Yong K, Li Y (2017) Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl Therm Eng 123:1514–1522. https://doi.org/10.1016/j.applthermaleng.2017.06.059

Ravichandran L, Rusovs D, Arjunan TV, Selvaraj V, Waran M. (2018). Experimental study of brackish water distillation in single slope solar still using sensible heat storage materials. International scientific conference RURAL DEVELOPMENT 2017:391–396. https://doi.org/10.15544/RD.2017.086

Reddy T, Norford L, Kempton W (1991) Shaving residential air-conditioner electricity peaks by intelligent use of the building thermal mass. Energy 16(7):1001–1010. https://doi.org/10.1016/0360-5442(91)90060-Y

Rehman S, Al-Hadhrami LM, Alam MM (2015) Pumped hydro energy storage system: A technological review. Renew Sustain Energy Rev 44:586–598. https://doi.org/10.1016/j.rser.2014.12.040

Reilly JJ, Wiswall RH (1968) Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem 7(11):2254–2256. https://doi.org/10.1021/IC50069A016

Rönnebro ECE, Whyatt G, Powell M, Westman M, Zheng F, Fang ZZ (2015) Metal Hydrides for High-Temperature Power Generation. Energies 8(8):8406–8430. https://doi.org/10.3390/en8088406

Roßkopf C, Afflerbach S, Schmidt M, Görtz B, Kowald T, Linder M, Trettin R (2015) Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage. Energy Convers Manage 97:94–102. https://doi.org/10.1016/j.enconman.2015.03.034

Salatino P, Ammendola P, Bareschino P, Chirone R, Solimene R (2016) Improving the thermal performance of fluidized beds for concentrated solar power and thermal energy storage. Powder Technol 290:97–101. https://doi.org/10.1016/j.powtec.2015.07.036

Salyan S, Praveen B, Singh H, Suresh S, Reddy AS (2020) Liquid metal gallium in metal inserts for solar thermal energy storage: a novel heat transfer enhancement technique. Solar Energy Mater Solar Cells 208:110365. https://doi.org/10.1016/j.solmat.2019.110365

Samimi F, Babapoor A, Azizi M, Karimi G (2016) Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy 96(Feb 1):355–371. https://doi.org/10.1016/j.energy.2015.12.064

Sanchez-Jimenez PE, Perez-Maqueda LA, Valverde JM (2014) Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions. Appl Energy 118:92–99. https://doi.org/10.1016/j.apenergy.2013.12.024

Sanpasertparnich T, Idem R, Bolea I, deMontigny D, Tontiwachwuthikul P (2010) Integration of post-combustion capture and storage into a pulverized coal-fired power plant. Int J Greenhouse Gas Control 4(3):499–510. https://doi.org/10.1016/j.ijggc.2009.12.005

Sapali S, Patil P (2003). Analyses of a rock-bed-thermic oil solar energy storage system. Adv Renewable Energy Technol, Narosa Publishing House, New Delhi, pp 64–70

Sarbu I, Sebarchievici C. (2018) A comprehensive review of thermal energy storage. Sustainability 10. https://doi.org/10.3390/su10010191

Sari A, Alkan C, Bilgin C (2014) Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties. Appl Energy 136(dec31):217–227. https://doi.org/10.1016/j.apenergy.2014.09.047

Sarkar S, Mestry S, Mhaske ST (2022) Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: A review. J Energy Storage 50:104620. https://doi.org/10.1016/j.est.2022.104620

Saw LH, Ye Y, Tay AA, Chong WT, Kuan SH, Yew MC (2016) Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl Energy 177:783–792. https://doi.org/10.1016/j.apenergy.2016.05.122

Saxena A, Tirth V, Srivastava G (2014) Design and performance analysis of a solar air heater with high heat storage. Distrib Gener Altern Energy J 29(3):35–55. https://doi.org/10.1080/21563306.2014.10879016

Sayyar M, Weerasiri RR, Soroushian P, Lu J (2014) Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy Build 75:249–255. https://doi.org/10.1016/j.enbuild.2014.02.018

Scapino L, Zondag HA, Van Bael J, Diriken J, Rindt CCM (2017) Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Appl Energy 190:920–948. https://doi.org/10.1016/j.apenergy.2016.12.148

Schmidt M, Gollsch M, Giger F, Grün M, Linder M. (2016). Development of a Moving Bed Pilot Plant for Thermochemical Energy Storage with CaO/Ca(OH)2. AIP Conference Proceedings. AIP Publishing LLC, 1734(1): 050041

Shao L. (2010). Materials for energy efficiency and thermal comfort in new buildings. Materials for energy efficiency and thermal comfort in buildings, Woodhead Publ. Ltd., Oxford, UK, pp. 631–648

Sharifi NP, Shaikh A, Sakulich AR (2016) Application of phase change materials in gypsum boards to meet building energy conservation goals. Energy Buildings 138:455–467. https://doi.org/10.1016/j.enbuild.2016.12.046

Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005

Sharma RK, Ganesan P, Tyagi VV, Metselaar H, Sandaran SC (2015) Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manage 95(May):193–228. https://doi.org/10.1016/j.enconman.2015.01.084

Sheppard DA, Corgnale C, Hardy B, Motyka T, Zidan R, Paskevicius M, Buckley CE (2014) Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv 4(51):26552–26562. https://doi.org/10.1039/C4RA01682C

Shiraki M, Yakabe H, Uchida H (2013) Efficiency Calculations for SOFC/SOEC reversible system and evaluations of performances of button-size anode-supported cell. ECS Trans 57(1):3261. https://doi.org/10.1149/05701.3261ecst

Shirazi A, Farzad M, Azadi K, He B, Rabczuk T (2016) Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation. J Nanomater. 2016(2016):59. https://doi.org/10.1155/2016/2131946

Singh P, Sharma RK, Ansu AK, Goyal R, Sarı A, Tyagi VV (2021) A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Solar Energy Mater Solar Cells 223:110955. https://doi.org/10.1016/j.solmat.2020.110955

Sjostrom S (2016) Optimizing the costs of solid sorbent-based CO2 capture process through heat integration. Ada-Es Inc, Highlands Ranch. https://doi.org/10.2172/1337015

Skrylnyk O, Courbon E, Heymans N, Frère M, Bougard J, Descy G (2017) Energy Performances of Open Sorption Reactor with Ultra-Low Grade Heat Upgrading for Thermochemical Energy Storage Applications. Energy Procedia 135:304–316. https://doi.org/10.1016/j.egypro.2017.09.522

Stack DC (2017). Conceptual design and performance characteristics of firebrick resistance-heated energy storage for industrial heat supply and variable electricity production, Massachusetts Institute of Technology

Steinmann W-D, Eck M (2006) Buffer storage for direct steam generation. Sol Energy 80(10):1277–1282. https://doi.org/10.1016/j.solener.2005.05.013

Steinmann WD. (2015). Thermal energy storage systems for concentrating solar power (CSP) technology. Advances in Thermal Energy Storage Systems, Woodhead Publishing, pp 511–531. https://doi.org/10.1533/9781782420965.4.511

Straub AP, Yip NY, Lin S, Lee J, Elimelech M (2016) Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat Energy 1(7):16090. https://doi.org/10.1038/nenergy.2016.90

Strong C, Carrier Y, Handan Tezel F (2022) Experimental optimization of operating conditions for an open bulk-scale silica gel/water vapour adsorption energy storage system. Appl Energy 312:118533. https://doi.org/10.1016/j.apenergy.2022.118533

Sun H, Li Y, Yan X, Wang Z, Liu W (2020) CaO/CaCO3 thermochemical heat storage performance of CaO-based micrometre-sized tubular composite. Energy Convers Manage 222:113222. https://doi.org/10.1016/j.enconman.2020.113222

Sun M, Liu T, Li M, Tan J, Tian P, Wang H, Chen G, Jiang D, Liu X (2022) A deep supercooling eutectic phase change material for low-temperature battery thermal management. J Energy Storage 50:104240. https://doi.org/10.1016/j.est.2022.104240

Sunku Prasad J, Muthukumar P, Desai F, Basu DN, Rahman MM (2019) A critical review of high-temperature reversible thermochemical energy storage systems. Appl Energy 254:113733. https://doi.org/10.1016/j.apenergy.2019.113733

Suresh C, Saini RP (2020) Thermal performance of sensible and latent heat thermal energy storage systems. Int J Energy Res 44(6):4743–4758. https://doi.org/10.1002/er.5255

Tas CE, Unal H (2021) Thermally buffering polyethylene/halloysite/phase change material nanocomposite packaging films for cold storage of foods. J Food Eng 292:110351. https://doi.org/10.1016/j.jfoodeng.2020.110351

Tatsidjodoung P, Le Pierrès N, Heintz J, Lagre D, Luo L, Durier F (2016) Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Convers Manage 108:488–500. https://doi.org/10.1016/j.enconman.2015.11.011

Thu K, Saththasivam J, Saha BB, Chua KJ, Srinivasa Murthy S, Ng KC (2017) Experimental investigation of a mechanical vapour compression chiller at elevated chilled water temperatures. Appl Therm Eng 123:226–233. https://doi.org/10.1016/j.applthermaleng.2017.05.091

Tomassetti S, Aquilanti A, Muciaccia PF, Coccia G, Mankel C, Koenders EAB, Di Nicola G (2022) A review on thermophysical properties and thermal stability of sugar alcohols as phase change materials. J Energy Storage 55:105456. https://doi.org/10.1016/j.est.2022.105456

Tregambi C, Bareschino P, Mancusi E, Pepe F, Montagnaro F, Solimene R, Salatino P (2021) Modelling of a concentrated solar power – photovoltaics hybrid plant for carbon dioxide capture and utilization via calcium looping and methanation. Energy Convers Manage 230:113792. https://doi.org/10.1016/j.enconman.2020.113792

Tregambi C, Di Lauro F, Montagnaro F, Salatino P, Solimene R (2019) 110th Anniversary: Calcium Looping Coupled with Concentrated Solar Power for Carbon Capture and Thermochemical Energy Storage. Ind Eng Chem Res 58(47):21262–21272. https://doi.org/10.1021/acs.iecr.9b03083

Vadiee A, Martin V (2013) Thermal energy storage strategies for effective closed greenhouse design. Appl Energy 109:337–343. https://doi.org/10.1016/j.apenergy.2012.12.065

van Essen VM, Zondag HA, Gores JC, Bleijendaal LPJ, Bakker M, Schuitema R, van Helden WGJ, He Z, Rindt CCM (2009). Characterization of MgSO4 Hydrate for Thermochemical Seasonal Heat Storage. J Solar Energy Eng 131(4). https://doi.org/10.1115/1.4000275

Vargaftik N, Filippov L, Tarzimanov A, Totskii E (2020) Handbook of Thermal Conductivity of Liquids and Gases

Vasiliev LL, Burak VS, Kulakov AG, Mishkinis DA, Bohan PV (2000) Latent heat storage modules for preheating internal combustion engines: application to a bus petrol engine. Appl Therm Eng 20(10):913–923. https://doi.org/10.1016/S1359-4311(99)00061-7

Vetrovec J (2008) Engine cooling system with a heat load averaging capability. SAE paper, (2008-01), 1168

Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM (2015) Heat transfer fluids for concentrating solar power systems–a review. Appl Energy 146:383–396. https://doi.org/10.1016/j.apenergy.2015.01.125

Visnic B (2001) Thermostat, Thy Days are Numbered. Ward's Auto World 37(6):53–53

Wang C, Zhang G, Meng L, Li X, Situ W, Lv Y, Rao M (2017) Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res 41(15):2468–2479. https://doi.org/10.1002/er.3801

Wang M, Deng C, Wang Y, Feng X (2020) Exergoeconomic performance comparison, selection and integration of industrial heat pumps for low grade waste heat recovery. Energy Convers Manage 207:112532. https://doi.org/10.1016/j.enconman.2020.112532

Wang P, Feng X, Zhu Y, Lian J, Zhang H, Fang M (2020) Preparation and thermal properties of colloidal mixtures of capric acid and Na2HPO4·12H2O as a phase change material for energy storage. Solar Energy Mater Solar Cells 215:110636. https://doi.org/10.1016/j.solmat.2020.110636

Wang X, Dennis M, Hou L (2014) Clathrate hydrate technology for cold storage in air conditioning systems. Renew Sustain Energy Rev 36:34–51. https://doi.org/10.1016/j.rser.2014.04.032

Wang X, Zhang F, Lipiński W (2020) Carbon dioxide hydrates for cold thermal energy storage: A review. Sol Energy 211:11–30. https://doi.org/10.1016/j.solener.2020.09.035

Weber R, Dorer V (2008) Long-term heat storage with NaOH. Vacuum 82(7):708–716. https://doi.org/10.1016/j.vacuum.2007.10.018

Weinläder H, Körner W, Strieder B (2014) A ventilated cooling ceiling with integrated latent heat storage—Monitoring results. Energy Buildings 82:65–72. https://doi.org/10.1016/j.enbuild.2014.07.013

Wu W, Yang X, Zhang G, Chen K, Wang S (2017) Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Convers Manage 138:486–492. https://doi.org/10.1016/j.enconman.2017.02.022

Xie P, Jin L, Qiao G, Lin C, Barreneche C, Ding Y (2022) Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials. Renew Sustain Energy Rev 160:112263. https://doi.org/10.1016/j.rser.2022.112263

Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energy 160:286–307. https://doi.org/10.1016/j.apenergy.2015.09.016

Xu J, Li Y, Wang RZ, Liu W (2014) Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application. Energy 67:63–73. https://doi.org/10.1016/j.energy.2014.01.049

Xu J, Wang R, Li Y (2014) A review of available technologies for seasonal thermal energy storage. Sol Energy 103:610–638. https://doi.org/10.1016/j.solener.2013.06.006

Xu X, Zhang X, Ji J, Fang M, Yang M, Ma K, Gao Y (2022) Comparative Analysis of Additives for Increasing Thermal Conductivity of Phase Change Materials: A Review. Energy Fuels 36(10):5088–5101. https://doi.org/10.1021/acs.energyfuels.2c00522

Yam J, Li Y, Zheng Z (2003) Nonlinear coupling between thermal mass and natural ventilation in buildings. Int J Heat Mass Transf 46(7):1251–1564. https://doi.org/10.1016/S0017-9310(02)00379-4

Yan J, Li K, Chen H, Wang Q, Sun J (2016) Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Convers Manage 128:12–19. https://doi.org/10.1016/j.enconman.2016.09.058

Yan J, Zhao CY (2015) Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping. Chem Eng Sci 138:86–92. https://doi.org/10.1016/j.ces.2015.07.053

Yang L, Li Y (2008) Cooling load reduction by using thermal mass and night ventilation. Energy Buildings 40(11):2052–2058. https://doi.org/10.1016/j.enbuild.2008.05.014

Yang S, Shao X-F, Luo J-H, Baghaei Oskouei S, Bayer Ö, Fan L-W (2023) A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat. Energy 265:126359. https://doi.org/10.1016/j.energy.2022.126359

Yang XH, Tan SC, Jing L (2016) Thermal management of Li-ion battery with liquid metal. Energy Convers Manage 117:577–585. https://doi.org/10.1016/j.enconman.2016.03.054

Yao L, Yang B, Cui H, Zhuang J, Ye J, Xue J (2016) Challenges and progresses of energy storage technology and its application in power systems. J Modern Power Syst Clean Energy 4(4):519–528. https://doi.org/10.1007/s40565-016-0248-x

Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust Sci 39(5):489–514. https://doi.org/10.1016/j.pecs.2013.05.004

Yuan C, Liu X, Wang X, Song C, Zheng H, Tian C, Gao K, Sun N, Jiang Z, Xuan Y, Ding Y (2023) Rapid and stable calcium-looping solar thermochemical energy storage via co-doping binary sulfate and Al–Mn–Fe oxides. Green Energy Environ. https://doi.org/10.1016/j.gee.2023.02.009

Yuan Y, Zhang N, Tao W, Cao X, He Y (2014) Fatty acids as phase change materials: a review. Renew Sustain Energy Rev 29:482–498

Zare M, Mikkonen KS (2023) Phase Change Materials for Life Science Applications. Adv Func Mater 33(12):2213455. https://doi.org/10.1002/adfm.202213455

Zhang F, Zhou Y, Sun W, Hou S, Yu L (2018) CO2 capture from reheating furnace based on the sensible heat of continuous casting slabs. Int J Energy Res 42(6):2273–2283. https://doi.org/10.1002/er.4020

Zhang K, Liu M, Zhao Y, Zhang S, Yan H, Yan J (2022) Thermo-economic optimization of the thermal energy storage system extracting heat from the reheat steam for coal-fired power plants. Appl Thermal Eng 215:119008. https://doi.org/10.1016/j.applthermaleng.2022.119008

Zhang X, Ameli H, Dong Z, Vecchi A, Gallego-Schmid A, Strbac G, Sciacovelli A (2022) Values of latent heat and thermochemical energy storage technologies in low-carbon energy systems: Whole system approach. J Energy Storage 50:104126. https://doi.org/10.1016/j.est.2022.104126

Zhang YN, Wang RZ, Li TX (2017) Experimental investigation on an open sorption thermal storage system for space heating. Energy 141:2421–2433. https://doi.org/10.1016/j.energy.2017.12.003

Zhang Z-Y, Xu Y-P, Yang M-L (2000) Measurement of the Thermal Conductivities of Neopentylglycol, 1,1,1-Trihydroxymethylpropane, and Their Mixture in the Temperature Range from 20 °C to Their Supermelting Temperatures. J Chem Eng Data 45(6):1060–1063. https://doi.org/10.1021/je000030h

Zhang Z, Cheng J, He X (2017) Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons. Int J Heat Mass Transf 112:959–971. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.012

Zhao D, Li Y, Dai Y, Wang R (2011) Optimal study of a solar air heating system with pebble bed energy storage. Energy Convers Manage 52(6):2392–2400. https://doi.org/10.1016/j.enconman.2010.12.041

Zhao J, Lv P, Rao Z (2017) Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Exp Thermal Fluid Sci 82:182–188. https://doi.org/10.1016/j.energy.2021.122081

Zhao L, Luo J, Wang H, Song G, Tang G. (2016). Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles. Appl Therm Eng 99:495–501. https://doi.org/10.1016/j.applthermaleng.2015.12.111

Zhao Y, Zhao CY, Markides CN, Wang H, Li W (2020) Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review. Appl Energy 280:115950. https://doi.org/10.1016/j.apenergy.2020.115950

Zhou D, Zhao C-Y, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605. https://doi.org/10.1016/j.rser.2007.10.005

Zhu C, Huo D, Chen Q, Xue J, Shen S, Xia Y (2017) A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv Mater 29(40):1703702. https://doi.org/10.1002/adma.201703702

Zohuri B (2018). Hydrogen: Driving Renewable Energy. Hydrogen Energy.Hydrogen Energy: Challenges and Solutions for a Cleaner Future, 141–184