Roles of nanoparticles and heat generation/absorption on MHD flow of Ag–H2O nanofluid via porous stretching/shrinking convergent/divergent channel
Tóm tắt
This article unveils the combined impact of heat generation/absorption and Joule heating on MHD flow of Ag-H2O nanofluid into a porous stretching/shrinking divergent/convergent channel with viscous dissipation and solid volume fraction. The mathematical modeling is presented for the existing equations of continuity, momentum, and energy fraction. The reduced boundary value problem is solved numerically employing Runge-Kutta-Fehlberg (RKF) method via shooting scheme and then the outcomes are sketched and interpreted. The results explore that the thermal boundary layer thickness of the stretching divergent and the shrinking divergent channels enhance by increasing the value of the Eckert number, while the opposite tendency is scrutinized on the momentum boundary layer thickness by increasing the value of the porosity parameter for the stretching divergent and the shrinking convergent channels.
Tài liệu tham khảo
Sheikholeslami, M., Ganji, D.D., Ashorynejad, H.R., Rokni, H.B.: Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl. Math. Mech. 33(1), 25–36 (2012) https://doi.org/10.1007/s10483-012-1531-7
Turkyilmazoglu, M.: Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels. Comput. Fluids. 100, 196–203 (2014) https://doi.org/10.1016/j.compfluid.2014.05.016
Dogonchi, A.S., Ganji, D.D.: Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J. Mol. Liq. 220, 592–603 (2016) https://doi.org/10.1016/j.molliq.2016.05.022
Azimi, M., Riazi, R.: MHD copper-water nanofluid flow and heat transfer through convergent-divergent channel. J. Mech. Sci. Technol. 30(10), 4679–4686 (2016) https://doi.org/10.1007/s12206-016-0938-3
Khan, U., Ahmed, N., Mohyud-Din, S.T.: Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem. Eng. Sci. 141, 17–27 (2016) https://doi.org/10.1016/j.ces.2015.10.032
Usman, M., Haq, R.U., Hamid, M., Wang, W.: Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. J. Mol. Liq. 249, 856–867 (2018) https://doi.org/10.1016/j.molliq.2017.11.047
Ahmed, N., Abbasi, A., Khan, U., Mohyud-Din, S.T.: Thermal radiation effects on flow of Jeffery fluid in converging and diverging stretchable channels. Neural Comput. Applic. 30(8), 2371–2379 (2018) https://doi.org/10.1007/s00521-016-2831-5
Asadullah, M., Khan, U., Ahmed, N., Mohyud-Din, S.T.: Analytical and numerical investigation of thermal radiation effects on flow of viscous incompressible fluid with stretchable convergent/divergent channels. J. Mol. Liq. 224, 768–775 (2016) https://doi.org/10.1016/j.molliq.2016.10.073
Mohyud-Din, S.T., Khan, U., Ahmed, N., Bin-Mohsin, B.: Heat and mass transfer analysis for MHD flow of nanofluid inconvergent/divergent channels with stretchable walls using Buongiorno’s model. Neural Comput. Applic. 28(12), 4079–4092 (2017) https://doi.org/10.1007/s00521-016-2289-5
Gerdroodbary, M.B., Takami, M.R., Ganji, D.D.: Investigation of thermal radiation on traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Case Stud. Therm. Eng. 6, 28–39 (2015) https://doi.org/10.1016/j.csite.2015.04.002
Pandey, A.K., Kumar, M.: MHD flow inside a stretching/shrinking convergent/divergent channel with heat generation/absorption and viscous-Ohmic dissipation utilizing Cu-water nanofluid. Comput Therm Sci: An Int J. 10(05), 457–471 (2018) https://doi.org/10.1615/ComputThermalScien.2018020807
Pal, D., Mandal, G.: Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous–Ohmic dissipation. Powder Technol. 279, 61–74 (2015) https://doi.org/10.1016/j.powtec.2015.03.043
Hayat, T., Shafiq, A., Alsaedi, A.: Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation. Alexandria Eng. J. 55(3), 2229–2240 (2016) https://doi.org/10.1016/j.aej.2016.06.004
Hsiao, K.L.: Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng. 98, 850–861 (2016) https://doi.org/10.1016/j.applthermaleng.2015.12.138
Kayalvizhi, M., Kalaivanan, R., Ganesh, N.V., Ganga, B., Hakeem, A.A.: Velocity slip effects on heat and mass fluxes of MHD viscous–Ohmic dissipative flow over a stretching sheet with thermal radiation. Ain Shams Eng. J. 7(2), 791–797 (2016) https://doi.org/10.1016/j.asej.2015.05.010
Singh, K., Pandey, A.K., Kumar, M.: Analytical approach to a stagnation point flow and heat transfer of a micropolar fluid via a permeable shrinking sheet with slip and convective boundary conditions. Heat Transf. Res. 50(8), 739–756 (2018) https://doi.org/10.1615/HeatTransRes.2018024647
Pandey, A.K., Kumar, M.: Effects of viscous dissipation and heat generation/absorption on nanofluid flow over an unsteady stretching surface with thermal radiation and thermophoresis. Nanosc Technol: An Int J. 9(4), 325–341 (2018) https://doi.org/10.1615/NanoSciTechnolIntJ.2018025978
Megahed, A.M.: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation. J Egyptian Math Soc. 27(1), 12 (2019) https://doi.org/10.1186/s42787-019-0016-y
Ibrahim, W., Negera, M.: MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction. J Egyptian Math Soc. 28(1), 7(2020). https://doi.org/10.1186/s42787-019-0057-2
Elgazery, N.S.: Nanofluids flow over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of inclined magnetic field. J Egyptian Math Soc. 27(1), 9 (2019) https://doi.org/10.1186/s42787-019-0002-4
Ganga, B., Ansari, S.M.Y., Ganesh, N.V., Hakeem, A.A.: MHD radiative boundary layer flow of nanofluid past a vertical plate with internal heat generation/absorption, viscous and Ohmic dissipation effects. J. Nigerian Math. Soc. 34(2), 181–194 (2015) https://doi.org/10.1016/j.jnnms.2015.04.001
Singh, P., Pandey, A.K., Kumar, M.: Forced convection in MHD slip flow of alumina-water nanofluid over a flat plate. J Enhan Heat Transf. 23(6), 487–497 (2016) https://doi.org/10.1615/JEnhHeatTransf.2018025485
Mishra, A., Pandey, A.K., Kumar, M.: Velocity, thermal and concentration slip effects on MHD silver-water nanofluid past a permeable cone with suction/injection and viscous-Ohmic dissipation. Heat Transf. Res. 50(14), 1351-1367 (2019). https://doi.org/https://doi.org/10.1615/HeatTransRes.2018020420
Chamkha, A.J., Al-Mudhaf, A., Pop, I.: Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Commun. Heat Mass Transf. 33, 1096–1102 (2006) https://doi.org/10.1016/j.icheatmasstransfer.2006.04.009
Mishra, A., Pandey, A.K., Kumar, M.: Ohmic-viscous dissipation and slip effects on nanofluid flow over a stretching cylinder with suction/injection. Nanosc Technol: An Int J. 9(2), 99–115 (2018) https://doi.org/10.1615/NanoSciTechnolIntJ.2018025410
Alamri, S.Z., Khan, A.A., Azeez, M., Ellahi, R.: Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo-Christov heat flux model. Phys. Lett. A. 383, 276–281 (2019) https://doi.org/10.1016/j.physleta.2018.10.035
Ellahi, R., Sait, S.M., Shehzad, N., Ayaz, Z.: A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Meth Heat Fluid Flow. 30(2), 834–854 (2019) https://doi.org/10.1108/HFF-06-2019-0506
Majeed, A., Zeeshan, A., Bhatti, M.M., Ellahi, R.: Heat transfer in magnetite (Fe3O4) nanoparticles suspended in conventional fluids: refrigerant-134A (C2H2F4), kerosene (C10H22), and water (H2O) under the impact of dipole. Heat Transf Res. 51(3), 217–232 (2020) https://doi.org/10.1615/HeatTransRes.2019029919
Sarafraz, M.M., Pourmehran, O., Yang, B., Arjomandi, M., Ellahi, R.: Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int. J. Therm. Sci. 147, 106131 (2020) https://doi.org/10.1016/j.ijthermalsci.2019.106131
Krishna, M.V., Chamkha, A.J.: Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids-application in biomedical engineering. J Egyptian Math Soc. 28(1), 1 (2020) https://doi.org/10.1186/s42787-019-0065-2