Roles of matrix metalloproteinases in the cornea: A special focus on macular corneal dystrophy

Medicine in Drug Discovery - Tập 11 - Trang 100095 - 2021
Saniye Gul Kaya1,2, Seniz Inanc-Surer3, Gulcin Cakan-Akdogan1,4, Gulgun Oktay3, Canan Asli Utine1,5, Sibel Kalyoncu1
1İzmir Biomedicine and Genome Center, İzmir, Turkey
2Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
3Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
4Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey;
5Department of Ophthalmology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey

Tài liệu tham khảo

Page-McCaw, 2007, Matrix metalloproteinases and the regulation of tissue remodelling, Nat Rev Mol Cell Biol, 8, 221, 10.1038/nrm2125 Sekton B, Matrix metalloproteinases – an overview, Res Rep Biol, 2010; 1. Hu, 2007, Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases, Nat Rev Drug Discov, 6, 480, 10.1038/nrd2308 Bode, 1999, Insights into MMP-TIMP interactions, Ann N Y Acad Sci, 878, 73, 10.1111/j.1749-6632.1999.tb07675.x Zucker, 2004, Role of matrix metalloproteinases (MMPs) in colorectal cancer, Cancer Metastasis Rev, 23, 101, 10.1023/A:1025867130437 Vassalli, 1992, The pathophysiology of tumor necrosis factors, Annu Rev Immunol, 10, 411, 10.1146/annurev.iy.10.040192.002211 Gearing, 1994, Processing of tumour necrosis factor-α precursor by metalloproteinases, Nature, 370, 555, 10.1038/370555a0 Vandenbroucke, 2013, Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF, EMBO Mol Med, 5, 1000, 10.1002/emmm.201202100 Li, 2020, The past, present and future perspectives of matrix metalloproteinase inhibitors, Pharmacol Ther, 207, 10.1016/j.pharmthera.2019.107465 Dufour, 2008, Role of the hemopexin domain of matrix metalloproteinases in cell migration, J Cell Physiol, 217, 643, 10.1002/jcp.21535 Rydlova, 2008, Biological activity and clinical implications of the matrix metalloproteinases, Anticancer Res Hsu, 2006, Matrix metalloproteinase-13 expression is associated with bone marrow microinvolvement and prognosis in non-small cell lung cancer, Lung Cancer, 52, 349, 10.1016/j.lungcan.2006.01.011 Morgia, 2005, Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer, Urol Res, 33, 44, 10.1007/s00240-004-0440-8 Salimi Sartakhti, 2017, MMP–TIMP interactions in cancer invasion: An evolutionary game-theoretical framework, J Theor Biol, 412, 17, 10.1016/j.jtbi.2016.09.019 Sivak, 2002, MMPs in the eye: Emerging roles for matrix metalloproteinases in ocular physiology, Prog Retin Eye Res, 21, 1, 10.1016/S1350-9462(01)00015-5 De Groef, 2015, Matrix metalloproteinases in the mouse retina: A comparative study of expression patterns and MMP antibodies Retina, BMC Ophthalmol, 10.1186/s12886-015-0176-y Janssens, 2013, Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development, PLoS One, 8, 10.1371/journal.pone.0052915 George, 2019, Effect of MMP-9 gene knockout on retinal vascular form and function, Physiol Genomics, 51, 613, 10.1152/physiolgenomics.00041.2019 Singh, 2017, Metalloproteinases as mediators of inflammation and the eyes: Molecular genetic underpinnings governing ocular pathophysiology, Int J Ophthalmol, 10, 1308 Hoffmann, 2006, MMP-2 and MMP-9 secretion by RPE is stimulated by angiogenic molecules found in choroidal neovascular membranes, Retina, 26, 454, 10.1097/01.iae.0000238549.74626.33 Ambati, 2003, Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies, Surv Ophthalmol, 48, 257, 10.1016/S0039-6257(03)00030-4 Chau, 2008, Plasma levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration, Eye, 22, 855, 10.1038/sj.eye.6702722x Drankowska, 2019, MMP targeting in the battle for vision: Recent developments and future prospects in the treatment of diabetic retinopathy, Life Sci, 229, 149, 10.1016/j.lfs.2019.05.038 Opdenakker, 2019, Metalloproteinases mediate diabetes-induced retinal neuropathy and vasculopathy, Cell Mol Life Sci, 76, 3157, 10.1007/s00018-019-03177-3 Descamps, 2006, The activated form of gelatinase B/matrix metalloproteinase-9 is associated with diabetic vitreous hemorrhage, Exp Eye Res, 83, 401, 10.1016/j.exer.2006.01.017 Salzmann, 2000, Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy, Br J Ophthalmol, 84, 1091, 10.1136/bjo.84.10.1091 Ashworth Briggs, 2015, TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients, Mol Vis, 21, 1162 Konieczka, 2014, Unstable oxygen supply and glaucoma, Klin Monbl Augenheilkd, 231, 121, 10.1055/s-0033-1360242 Robert, 2001, Corneal collagens, Pathol Biol, 49, 353, 10.1016/S0369-8114(01)00144-4 Couture, 2016, The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing, Biomaterials, 78, 86, 10.1016/j.biomaterials.2015.11.006 Gabison, 2005, Differential expression of extracellular matrix metalloproteinase inducer (CD147) in normal and ulcerated corneas: Role in epithelio-stromal interactions and matrix metalloproteinase induction, Am J Pathol, 166, 209, 10.1016/S0002-9440(10)62245-6 Mackiewicz, 2006, Collagenolytic proteinases in keratoconus, Cornea, 25, 603, 10.1097/01.ico.0000208820.32614.00 Sakimoto, 2012, Metalloproteinases in corneal diseases: degradation and processing, Cornea, 31, 50, 10.1097/ICO.0b013e318269ccd0 Mohan, 1998, Gelatinase B/lacZ transgenic mice, a model for mapping gelatinase B expression during developmental and injury-related tissue remodeling, J Biol Chem, 273, 25903, 10.1074/jbc.273.40.25903 Smith, 2004, Doxycycline - A role in ocular surface repair, Br J Ophthalmol, 88, 619, 10.1136/bjo.2003.025551 Yi, 2019, The wound healing effect of doxycycline after corneal alkali burn in rats, J Ophthalmol, 2019, 1, 10.1155/2019/5168652 Li, 2001, Regulation of MMP-9 production by human corneal epithelial cells, Exp Eye Res, 73, 449, 10.1006/exer.2001.1054 De Paiva, 2006, Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye, Exp Eye Res, 83, 526, 10.1016/j.exer.2006.02.004 Pflugfelder, 2005, Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye, Am J Pathol, 166, 61, 10.1016/S0002-9440(10)62232-8 Bian, 2016, Dexamethasone drug eluting nanowafers control inflammation in alkali-burned corneas associated with dry eye, Invest Ophthalmol Vis Sci, 57, 3222, 10.1167/iovs.16-19074 Kim, 2005, Doxycycline inhibits TGF-β1-induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells, Invest Ophthalmol Vis Sci, 46, 840, 10.1167/iovs.04-0929 Silva, 2010, Peripheral ulcerative keratitis: A serious complication of rheumatoid arthritis, Rheumatol Int, 30, 1267, 10.1007/s00296-009-1161-7 Givvimani, 2013, TIMP-2 mutant decreases MMP-2 activity and augments pressure overload induced LV dysfunction and heart failure, Arch Physiol Biochem, 119, 65, 10.3109/13813455.2012.755548 Rigas, 2020, NSAID-induced corneal melt: Clinical importance, pathogenesis, and risk mitigation, Surv Ophthalmol, 65, 1, 10.1016/j.survophthal.2019.07.001 Luo, 2004, Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface, Invest Ophthalmol Vis Sci, 45, 4293, 10.1167/iovs.03-1145 Reviglio, 2003, Effects of topical nonsteroidal antiinflammatory drugs on the expression of matrix metalloproteinases in the cornea, J Cataract Refract Surg, 29, 989, 10.1016/S0886-3350(02)01737-6 Reddy, 2018, Tear biomarkers in latanoprost and bimatoprost treated eyes, PLoS One, 13, 1, 10.1371/journal.pone.0201740 Lopez, 2019, Matrix metalloproteinase-deactivating contact lens for corneal melting, ACS Biomater Sci Eng, 5, 1195, 10.1021/acsbiomaterials.8b01404 Odorcic, 2009, Infliximab for the treatment of refractory progressive sterile peripheral ulcerative keratitis associated with late corneal perforation: 3-year follow-up, Cornea, 10.1097/ICO.0b013e318181a84f Robert, 2017, Infliximab after Boston keratoprosthesis in Stevens-Johnson syndrome: an update, Ocul Immunol Inflamm, 10.3109/09273948.2016.1145237 Lanza, 2016, The matrix metalloproteinase 9 point-of-care test in dry eye, Ocul Surf, 14, 189, 10.1016/j.jtos.2015.10.004 Pflugfelder, 2017, The pathophysiology of dry eye disease: what we know and future directions for research, Ophthalmology, 124, S4, 10.1016/j.ophtha.2017.07.010 Farley W, Pflugfelder SC, Li D-Q, Chen Z, Song XJ, Hyperosmolarity stimulates production of MMP-9, IL-1ßand TNF- by human corneal epithelial cells via a c-Jun NH2-terminal kinase pathway, Invest Ophthalmol Vis Sci, 43(13); 2002;0. Li, 2004, Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells, Invest Ophthalmol Vis Sci, 45, 4302, 10.1167/iovs.04-0299 Lanza, 2016, Dry eye profiles in patients with a positive elevated surface matrix metalloproteinase 9 point-of-care test versus negative patients, Ocul Surf, 14, 216, 10.1016/j.jtos.2015.12.007 di Martino, 2019, Matrix metalloproteinases in keratoconus – Too much of a good thing?, Exp Eye Res, 182, 137, 10.1016/j.exer.2019.03.016 Murab, 2016, Establishment of an in vitro monolayer model of macular corneal dystrophy, Lab Invest, 96, 1311, 10.1038/labinvest.2016.102 Bertini, 2009, Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1), J Biol Chem, 284, 12821, 10.1074/jbc.M809627200 Murphy, 2008, Progress in matrix metalloproteinase research, Mol Aspects Med, 29, 290, 10.1016/j.mam.2008.05.002 Lauer-Fields, 2002, Matrix metalloproteinases and collagen catabolism, Biopolym - Pept Sci Sect, 66, 19, 10.1002/bip.10201 Manka, 2012, Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1, Proc Natl Acad Sci U S A, 109, 12461, 10.1073/pnas.1204991109 Karabencheva-Christova TG, Christov CZ, Fields GB, Collagenolytic matrix metalloproteinase structure–function relationships: insights from molecular dynamics studies, 1st ed., vol. 109. Elsevier Inc., 2017. Rubinstein Y, et al., Macular corneal dystrophy and posterior corneal abnormalities, Cornea, 2016. Klintworth, 2003, The molecular genetics of the corneal dystrophies - Current status, Front Biosci, 8, d687, 10.2741/1018 Jonasson, 1996, Macular corneal dystrophy in Iceland: A clinical, genealogic, and immunohistochemical study of 28 patients, Ophthalmology, 103, 1111, 10.1016/S0161-6420(96)30559-9 Alzuhairy, 2015, Prevalence and histopathological characteristics of corneal stromal dystrophies in Saudi Arabia, Middle East Afr J Ophthalmol Zhang, 2019, A comprehensive evaluation of 181 reported CHST6 variants in patients with macular corneal dystrophy, Aging (Albany NY), 11, 1019, 10.18632/aging.101807 Gain, 2016, Global survey of corneal transplantation and eye banking, JAMA Ophthalmol, 134, 167, 10.1001/jamaophthalmol.2015.4776 Klintworth, 1983, Recurrence of macular corneal dystrophy within grafts, Am J Ophthalmol, 95, 60, 10.1016/0002-9394(83)90334-3 Marcon, 2003, Recurrence of corneal stromal dystrophies after penetrating keratoplasty, Cornea, 22, 19, 10.1097/00003226-200301000-00005 Akama, 2000, Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene, Nat Genet, 26, 237, 10.1038/79987 Lewis, 2000, Ultrastructural localization of sulfated and unsulfated keratan sulfate in normal and macular corneal dystrophy type I, Glycobiology, 10, 305, 10.1093/glycob/10.3.305 Lewis, 2010, Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea, Structure, 18, 239, 10.1016/j.str.2009.11.013 Souza, 2007, Chondroitin sulfate and keratan sulfate are the major glycosaminoglycans present in the adult zebrafish Danio rerio (Chordata-Cyprinidae), Glycoconj J, 24, 521, 10.1007/s10719-007-9046-z Blochberger, 1992, Isolation and partial characterization of lumican and decorin from adult chicken corneas. A keratan sulfate-containing isoform of decorin is developmentally regulated, J Biol Chem, 267, 20613, 10.1016/S0021-9258(19)36731-6 Corpuz, 1996, Molecular cloning and tissue distribution of keratocan, J Biol Chem, 271, 9759, 10.1074/jbc.271.16.9759 Funderburgh, 1997, Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin, J Biol Chem, 272, 28089, 10.1074/jbc.272.44.28089 Plaas, 2001, Altered fine structures of corneal and skeletal keratan sulfate and chondroitin/dermatan sulfate in macular corneal dystrophy, J Biol Chem, 276, 39788, 10.1074/jbc.M103227200 Liu, 2006, Macular corneal dystrophy types I and II are caused by distinct mutations in the CHST6 gene in Iceland, Mol Vis, 12, 1148 Cursiefen, 2001, Immunohistochemical classification of primary and recurrent macular corneal dystrophy in Germany: Subclassification of immunophenotype I A using a novel keratan sulfate antibody, Exp Eye Res, 73, 593, 10.1006/exer.2001.1080 Pietraszek, 2014, Lumican: A new inhibitor of matrix metalloproteinase-14 activity, FEBS Lett, 588, 4319, 10.1016/j.febslet.2014.09.040 Niewiarowska, 2011, Lumican inhibits angiogenesis by interfering with α2β1 receptor activity and downregulating MMP-14 expression, Thromb Res, 128, 452, 10.1016/j.thromres.2011.06.011 Pietraszek-Gremplewicz, 2019, Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners?, Matrix Biol, 75-76, 271, 10.1016/j.matbio.2017.12.006 Akhtar, 2015, Collagen fibrils and proteoglycans of macular dystrophy cornea: ultrastructure and 3D transmission electron tomography, Microsc Microanal, 21, 666, 10.1017/S1431927615000483 Palka, 2010, Structural collagen alterations in macular corneal dystrophy occur mainly in the posterior stroma, Curr Eye Res, 35, 580, 10.3109/02713681003760150 Plessy, 1975, Water vapor sorption of keratan sulfate, Mol Cell Biochem, 6, 85, 10.1007/BF01732002 Chakravarti S, Magnuson T, Lass JH, Jepsen KH, LaMantia C, Carroll H, Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican, J. Cell Biol., 1998. Rada, 1993, Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins, Exp Eye Res, 56, 635, 10.1006/exer.1993.1081 Yeh, 2010, Knockdown of zebrafish lumican gene (zlum) causes scleral thinning and increased size of scleral coats, J Biol Chem, 285, 28141, 10.1074/jbc.M109.043679 Monfort, 2006, Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: Identification of a new biglycan cleavage site, Arthritis Res Ther, 8, 1, 10.1186/ar1873 Aggarwal, 2018, Macular corneal dystrophy: A review, Surv Ophthalmol, 63, 609, 10.1016/j.survophthal.2018.03.004 Klintworth GK, Vogel FS, Macular corneal dystrophy. An inherited acid mucopolysaccharide storage, Am J Pathol, 1964. Lorenzetti, 1967, Macular and lattice dystrophies and their recurrences after keratoplasty, Trans - Am Acad Ophthalmol Otolaryngol Akova, 1990, Recurrent macular corneal dystrophy following penetrating keratoplasty, Eye, 4, 698, 10.1038/eye.1990.98 Williams, 2016, Gene therapy and gene editing for the corneal dystrophies, Asia-Pacific J Ophthalmol, 5, 312, 10.1097/APO.0000000000000215 Uehara H, et al., Start codon disruption with CRISPR/Cas9 prevents murine Fuchs’ endothelial corneal dystrophy, bioRxiv, 2020. Moore, 2018, Personalised genome editing – The future for corneal dystrophies, Progr Retinal Eye Res, 65, 147, 10.1016/j.preteyeres.2018.01.004 Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH, CRISPR applications in ophthalmologic genome surgery, Curr Opin Ophthalmol. 2017. Mohan, 2005, Gene therapy in the cornea, Prog Retin Eye Res, 24, 537, 10.1016/j.preteyeres.2005.04.001 Concolino D, Deodato F, Parini R, Enzyme replacement therapy: Efficacy and limitations, Ital J Pediatr, 44(Suppl 2), 2018. Barton, 1990, Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease, Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.87.5.1913 Muenzer, 2011, Overview of the mucopolysaccharidoses, Rheumatology, 50, v4, 10.1093/rheumatology/ker394 Fenzl, 2015, Ocular manifestations and management recommendations of lysosomal storage disorders I: Mucopolysaccharidoses, Clin Ophthalmol, 10.2147/OPTH.S78368 Ashworth, 2006, Mucopolysaccharidoses and the eye, Surv Ophthalmol, 51, 1, 10.1016/j.survophthal.2005.11.007 Tomatsu, 2014, Enzyme replacement therapy in newborn mucopolysaccharidosis IVA mice: Early treatment rescues bone lesions?, Mol Genet Metab, 111, S104 Bruner, 1985, Corneal alpha-galactosidase deficiency in macular corneal dystrophy, Ophthalmic Genet, 5, 179, 10.3109/13816818509006131 Tomomatsu, 2009, Aldose reductase inhibitor counteracts the attenuated adhesion of human corneal epithelial cells induced by high glucose through modulation of MMP-10 expression, Diabetes Res Clin Pract, 86, 16, 10.1016/j.diabres.2009.07.007 Takamura, 2013, Aldose reductase inhibitor counteracts the enhanced expression of matrix metalloproteinase-10 and improves corneal wound healing in galactose-fed rats, Mol Vis Charalel, 2012, Diffusion of protein through the human cornea, Ophthalmic Res, 48, 50, 10.1159/000329794 Cathcart, 2015, Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas, Genes Dis, 10.1016/j.gendis.2014.12.002 Jabłońska-Trypuć, 2016, Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs, J Enzyme Inhib Med Chem, 31, 177, 10.3109/14756366.2016.1161620 Laronha, 2020, Structure and function of human matrix metalloproteinases, Cells, 9, 1076, 10.3390/cells9051076 Madzharova, 2019, Post-translational modification-dependent activity of matrix metalloproteinases, Int J Mol Sci, 20, 1, 10.3390/ijms20123077 Hadler-Olsen, 2011, Regulation of matrix metalloproteinase activity in health and disease, FEBS J, 278, 28, 10.1111/j.1742-4658.2010.07920.x Brézillon, 2013, Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins, FEBS J, 280, 2369, 10.1111/febs.12210