Role of transcription factor AP-1 in integration of cell signaling systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Angel P., Karin M. 1991. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta. 1072, 129–157.
Hess J., Angel P., Schorpp-Kistner M. 2004. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 117, 5965–5973.
Mechta-Grigoriou F., Gerald D., Yaniv M. 2001. The mammalian Jun proteins: Redundancy and specificity. Oncogene. 20, 2378–2389.
Chinenov Y., Kerppola T.K. 2001. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 20, 2438–2452.
Wagner E.F., Eferl R. 2005. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 208, 126–140.
Reddy S.P., Mossman B.T. 2002. Role and regulation of activator protein-1 in toxicant-induced responses of the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L1161–L1178.
Angel P., Szabowski A. 2002. Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochem. Pharmacol. 64, 949–956.
Waetzig V., Herdegen T. 2004. Neurodegenerative and physiological actions of c-Jun N-terminal kinases in the mammalian brain. Neurosci. Lett. 361, 64–67.
Maki Y., Bos T.J., Davis C., Starbuck M., Vogt P.K. 1987. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl. Acad. Sci. USA. 84, 2848–2852.
Curran T., Peters G., van Beveren C., Teich N.M., Verma I.M. 1982. FBJ murine osteosarcoma virus: Identification and molecular cloning of biologically active proviral DNA. J. Virol. 44, 674–682.
Tulchinsky E. 2000. Fos family members: Regulation, structure and role in oncogenic transformation. Histol. Histopathol. 15, 921–928.
Shaulian E., Karin M. 2002. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131–E136.
Gass P., Fleischmann A., Hvalby O., Jensen V., Zacher C., Strekalova T., Kvello A., Wagner E.F., Sprengel R. 2004. Mice with a fra-1 knock-in into the c-fos locus show impaired spatial but regular contextual learning and normal LTP. Brain Res. Mol. Brain Res. 130, 16–22.
Hai T., Hartman M.G. 2001. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: Activating transcription factor proteins and homeostasis. Gene. 273, 1–11.
Van Dam H., Castellazzi M. 2001. Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene. 20, 2453–2464.
Servillo G., Della Fazia M.A., Sassone-Corsi P. 2002. Coupling cAMP signaling to transcription in the liver: Pivotal role of CREB and CREM. Exp. Cell Res. 275, 143–154.
Panne D., Maniatis T., Harrison S.C. 2004. Crystal structure of ATF-2/c-Jun and IRF-3 bound to the interferon-β enhancer. EMBO J. 23, 4384–4393.
Chastel C., Jiricny J., Jaussi R. 2004. Activation of stress-responsive promoters by ionizing radiation for deployment in targeted gene therapy. DNA Repair. 3, 201–215.
Hazzalin C.A., Mahadevan L.C. 2002. MAPK-regulated transcription: A continuously variable gene switch. Nat. Rev. Mol. Cell. Biol. 3, 30–40.
Bogoyevitch M.A., Court N. W. 2004. Counting on mitogen-activated protein kinases-ERKs 3, 4, 5, 6, 7, and 8. Cell Signal. 16, 1345–1354.
Zarubin T., Han J. 2005. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 15, 11–18.
Matsukawa J., Matsuzawa A., Takeda K., Ichijo H. 2004. The ASK1-MAP kinase cascades in mammalian stress response. J. Biochem. (Tokyo). 136, 261–265.
Thiefes A., Wolter S., Mushinski J.F., Hoffmann E., Dittrich-Breiholz O., Graue N., Dorrie A., Schneider H., Wirth D., Luckow B., Resch K., Kracht M. 2005. Simultaneous blockade of NF-κB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis factor target genes. J. Biol. Chem. 280, 27,728–27,741.
Cazillis M., Bringuier A.F., Delautier D., Buisine M., Bernuau D., Gespach C., Groyer A. 2004. Disruption of MKK4 signaling reveals its tumor-suppressor role in embryonic stem cells. Oncogene. 23, 4735–4744.
Roux P.P., Blenis J. 2004. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344.
Zhang Z.Y., Zhou B., Xie L. 2002. Modulation of protein kinase signaling by protein phosphatases and inhibitors. Pharmacol. Ther. 93, 307–317.
Liebermann D.A., Hoffman B. 2003. Myeloid differentiation (MyD) primary response genes in hematopoiesis. Blood Cells Mol. Dis. 31, 213–228.
Bubici C., Papa S., Pham C.G., Zazzeroni F., Franzoso G. 2006. The NF-κB-mediated control of ROS and JNK signaling. Histol. Histopathol. 21, 69–80.
Johnson G.L., Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298, 1911–1912.
Cuevas B.D., Uhlik M.T., Garrington T.P., Johnson G.L. 2005. MEKK1 regulates the AP-1 dimer repertoire via control of JunB transcription and Fra-2 protein stability. Oncogene. 24, 801–809.
Verrecchia F., Tacheau C., Schorpp-Kistner M., Angel P., Mauviel A. 2001. Induction of the AP-1 members c-Jun and JunB by TGFβ/Smad suppresses early Smad-driven gene activation. Oncogene. 20, 2205–2211.
Leaner V.D., Kinoshita I., Birrer M.J. 2003. AP-1 complexes containing cJun and JunB cause cellular transformation of Rat1a fibroblasts and share transcriptional targets. Oncogene. 28, 5619–5629.
Monje P., Hernandez-Losa J., Lyons R.J., Castellone M.D., Gutkind J.S. 2005. Regulation of the transcriptional activity of c-Fos by ERK: A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35,081–35,084.
Simi A., Edling Y., Ingelman-Sundberg M., Tindberg N. 2005. Activation of c-fos by lipopolysaccharide in glial cells via p38 mitogen-activated protein kinase-dependent activation of serum or cyclic AMP/calcium response element. J. Neurochem. 92, 915–924.
Bottone F.G., Moon Y., Alston-Mills B., Eling T.E. 2005. Transcriptional regulation of activating transcription factor 3 involves the early growth response-1 gene. J. Pharmacol. Exp. Ther. 315, 668–677.
Yang X., Matsuda K., Bialek P., Jacquot S., Masuoka H.C., Schinke T., Li L., Brancorsini S., Sassone-Corsi P., Townes T.M., Hanauer A., Karsenty G. 2004. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell. 117, 387–398.
Morton S., Davis R.J., Cohen P. 2004. Signaling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Lett. 572, 177–183.
Kholodenko B.N. 2003. Four-dimensional organization of protein kinase signaling cascades: The roles of diffusion, endocytosis and molecular motors. J. Exp. Biol. 206, 2073–2082.
Hubbard S.R. 2002. Protein tyrosine kinases: Autoregulation and small-molecule inhibition. Curr. Opin. Struct. Biol. 12, 735–741.
Kolch W. 2005. Coordinating ERK/MAPK signaling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837.
Wing M.R., Bourdon D.M., Harden T.K. 2003. PLC: A shared effector protein in Ras-, Rho-, and G α β γ-mediated signaling. Mol. Interv. 3, 273–280.
Tan S.L., Parker P.J. 2003. Emerging and diverse roles of protein kinase C in immune cell signaling. Biochem. J. 376, 545–552.
Brose N., Betz A., Wegmeyer H. 2004. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr. Opin. Neurobiol. 14, 328–340.
Zhao Z.S., Manser E. 2005. PAK and other Rho-associated kinases: Effectors with surprisingly diverse mechanisms of regulation. Biochem. J. 386, 201–214.
DeMali K.A., Wennerberg K., Burridge K. 2003. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15, 572–582.
Wymann M.P., Marone R. 2005. Phosphoinositide 3-kinase in disease: Timing, location, and scaffolding. Curr. Opin. Cell Biol. 17, 141–149.
Kaur H., Park C.S., Lewis J.M., Haugh J.M. 2006. Quantitative model of Ras-phosphoinositide 3-kinase signaling cross-talk based on co-operative molecular assembly. Biochem. J. 393, 235–243.
Krasil’nikov M.A. 2000. Phosphatidylinositol 3-kinase-dependent pathways: Role in regulation of cell growth, resistance, and malignant transformation. Biokhimiya. 65, 68–78.
Fresno Vara J.A., Casado E., de Castro J., Cejas P., Belda-Iniesta C., Gonzalez-Baron M. 2004. PI3K/Akt signaling pathway and cancer. Cancer Treat. Rev. 30, 193–204.
Song G., Ouyang G., Bao S. 2005. The activation of Akt/PKB signaling pathway and cell survival. J. Cell Mol. Med. 9, 59–71.
Paukku K., Silvennoinen O. 2004. STATs as critical mediators of signal transduction and transcription: Lessons learned from STAT5. Cytokine Growth Factor Rev. 15, 435–455.
Dempsey P.W., Doyle S.E., He J.Q., Cheng G. 2003. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev. 14, 193–209.
Chung J.Y., Park Y.C., Ye H., Wu H. 2002. All TRAFs are not created equal: Common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688.
Belitskii I.P., Moshnikova A.V., Prisakova O.V. 2002. Pathways of cytotoxic signal transduction through TNF family receptors. Biokhimiya. 67, 377–395
Sumbayev V.V., Yasinska I.M. 2005. Regulation of MAP kinase-dependent apoptotic pathway: Implication of reactive oxygen and nitrogen species. Arch. Biochem. Biophys. 436, 406–412.
Liu H., Colavitti R., Rovira I.I., Finkel T. 2005. Redox-dependent transcriptional regulation. Circ. Res. 97, 967–674.
Turpaev K.T. 2002. Reactive oxygen species and regulation of gene expression. Biokhimiya. 67, 339–352.
Meylan E., Tschopp J. 2005. The RIP kinases: Crucial integrators of cellular stress. Trends Biochem. Sci. 30, 151–159.
Shakibaei M., Schulze-Tanzil G., Takada Y., Aggarwal B.B. 2005. Redox regulation of apoptosis by members of the TNF superfamily. Antioxid. Redox Signal. 7, 482–496.
Cho S., Ko H.M., Kim J.M., Lee J.A., Park J.E., Jang M.S., Park S.G., Lee do H., Ryu S.E., Park B.C. 2004. Positive regulation of apoptosis signal-regulating kinase 1 by hD53L1. J. Biol. Chem. 279, 16,050–16,056.
Martin M.U., Wesche H. 2002. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta. 1592, 265–280.
Kollewe C., Mackensen A.C., Neumann D., Knop J., Cao P., Li S., Wesche H., Martin M.U. 2004. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J. Biol. Chem. 279, 5227–5236.
Suzuki N., Suzuki S., Yeh W.C. 2002. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol. 23, 503–506.
Shim J.H., Xiao C., Paschal A.E., Bailey S.T., Rao P., Hayden M.S., Lee K.Y., Bussey C., Steckel M., Tanaka N., Yamada G., Akira S., Matsumoto K., Ghosh S. 2005. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681.
Tanno M., Bassi R., Gorog D.A., Saurin A.T., Jiang J., Heads R.J., Martin J.L., Davis R.J., Flavell R.A., Marber M.S. 2003. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: Evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ. Res. 93, 254–261.
Mukundan L., Bishop G.A., Head K.Z., Zhang L., Wahl L.M., Suttles J. 2005. TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. J. Immunol. 174, 1081–1090.
Chandrasekar B., Mummidi S., Valente A.J., Patel D.N., Bailey S.R., Freeman G.L., Hatano M., Tokuhisa T., Jensen L.E. 2005. The pro-atherogenic cytokine interleukin-18 induces CXCL16 expression in rat aortic smooth muscle cells via MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, c-Src, phosphatidylinositol 3-kinase, Akt, c-Jun N-terminal kinase, and activator protein-1 signaling. J. Biol. Chem. 280, 26,263–26,277.
Han K.J., Su X., Xu L.G., Bin L.H., Zhang J., Shu H.B. 2004. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-κB activation and apoptosis pathways. J. Biol. Chem. 279, 15,652–15,661.
ten Dijke P., Hill C.S. 2004. New insights into TGFβ-Smad signaling. Trends Biochem. Sci. 29, 265–273.
Warner D.R., Bhattacherjee V., Yin X., Singh S., Mukhopadhyay P., Pisano M.M., Greene R.M. 2004. Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem. Biophys. Res. Commun. 324, 70–76.
Abecassis L., Rogier E., Vazquez A., Atfi A., Bourgeade M.F. 2004. Evidence for a role of MSK1 in transforming growth factor-β-mediated responses through p38α and Smad signaling pathways. J. Biol. Chem. 279, 30,474–30,479.
Hu T., Ramachandrarao S.P., Siva S., Valancius C., Zhu Y., Mahadev K., Toh I., Goldstein B.J., Woolkalis M., Sharma K. 2005. Reactive oxygen species production via NADPH oxidase mediates TGF-β-induced cytoskeletal alterations in endothelial cells. Am. J. Physiol. Renal Physiol. 289, F816–F825.
Yoon Y., Lee J.H., Hwang S.C., Choi K.S., Yoon G. 2005. TGF β1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene. 24, 1895–1903.
Luttrell L.M. 2005. Composition and function of G protein-coupled receptor signalsomes controlling mitogenactivated protein kinase activity. J. Mol. Neurosci. 26, 253–264.
Shah B.H., Catt K.J. 2004. GPCR-mediated transactivation of RTKs in the CNS: Mechanisms and consequences. Trends Neurosci. 27, 48–53.
Tkachuk V.A., Acakyan A.E. 2003. Molecular mechanisms of G-protein coupling with membrane receptors and secondary messenger systems. Ross. Fiziol. Zh. im. I.M. Sechenova. 89, 1478–1490.
Watts V.J., Neve K.A. 2005. Sensitization of adenylate cyclase by Gα i/o-coupled receptors. Pharmacol. Ther. 106, 405–421.
Brock C., Schaefer M., Reusch H.P., Czupalla C., Michalke M., Spicher K., Schultz G., Nurnberg B. 2003. Roles of G-βγ in membrane recruitment and activation of p110-γ/p101 phosphoinositide 3-kinase γ. J. Cell Biol. 160, 89–99.
Brose N., Betz A., Wegmeyer H. 2004. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr. Opin. Neurobiol. 14, 328–340.
Pang J.H., Kraemer A., Stehbens S.J., Frame M.C., Yap A.S. 2005. Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J. Biol. Chem. 280, 3043–3050.
Yang K., Kim J.H., Kim H.J., Park I.S., Kim I.Y., Yang B.S. 2005. Tyrosine 740 phosphorylation of discoidin domain receptor 2 by Src stimulates intramolecular autophosphorylation and Shc signaling complex formation. J. Biol. Chem. 280, 39,058–39,006.
Chan H.M., La Thangue N.B. 2001. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373.
Blobel G.A. 2002. CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J. Leukoc. Biol. 71, 545–556.
Smith J.L., Freebern W.J., Collins I., De Siervi A., Montano I., Haggerty C.M., McNutt M.C., Butscher W.G., Dzekunova I., Petersen D.W., Kawasaki E., Merchant J.L., Gardner K. 2004. Kinetic profiles of p300 occupancy in vivo predict common features of promoter structure and coactivator recruitment. Proc. Natl. Acad. Sci. USA. 101, 11,554–11,559.
Kasper L.H., Brindle P.K. 2006. Mammalian gene expression program resiliency: The roles of multiple coactivator mechanisms in hypoxia-responsive transcription. Cell Cycle. 5, 142–146.
Yang X.J. 2004. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976.
Sng J.C., Taniura H., Yoneda Y. 2004. A tale of early response genes. Biol. Pharm. Bull. 27, 606–612.
Oikawa T. 2004. ETS transcription factors: Possible targets for cancer therapy. Cancer Sci. 95, 626–633.
Wang H., Fang R., Cho J.Y., Libermann T.A., Oettgen P. 2004. Positive and negative modulation of the transcriptional activity of the ETS factor ESE-1 through interaction with p300, CREB-binding protein, and Ku 70/86. J. Biol. Chem. 279, 25,241–25,250.
El-Tanani M., Platt-Higgins A., Rudland P.S., Campbell F.C. 2004. Ets gene PEA3 cooperates with β-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J. Biol. Chem. 279, 20,794–20,806.
Yang S.H., Sharrocks A.D., Whitmarsh A.J. 2003. Transcriptional regulation by the MAP kinase signaling cascades. Gene. 320, 3–21.
Macian F. 2005. NFAT proteins: Key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484.
Macian F., Lopez-Rodriguez C., Rao A. 2001. Partners in transcription: NFAT and AP-1. Oncogene. 20, 2476–2489.
Im S.H., Rao A. 2004. Activation and deactivation of gene expression by Ca2+/calcineurin-NFAT-mediated signaling. Mol. Cells. 18, 1–9.
Motohashi H., O’Connor T., Katsuoka F., Engel J.D., Yamamoto M. 2002. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 294, 1–12.
Lee J.S., Surh Y.J. 2005. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224, 171–284.
Jaiswal A.K. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199–1207.
Kobayashi M., Yamamoto M. 2005. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394.
Ramji D.P., Foka P. 2002. CCAAT/enhancer-binding proteins: Structure, function and regulation. Biochem. J. 365, 561–575.
Oyadomari S., Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381–389.
Johnson P.F. 2005. Molecular stop signs: Regulation of cell-cycle arrest by C/EBP transcription factors. J. Cell Sci. 118, 2545–2555.
Zhu Y.M., Bradbury D.A., Pang L., Knox A.J. 2003. Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-κB. J. Biol. Chem. 278, 29,366–29,375.
Zhu Y., Saunders M.A., Yeh H., Deng W.G., Wu K.K. 2002. Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J. Biol. Chem. 277, 6923–6298.
Baccam M., Woo S.Y., Vinson C., Bishop G.A. 2003. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: Involvement of NF-κB, AP-1, and C/EBP. J. Immunol. 170, 3099–3108.
Kovacs K.A., Steinmann M., Magistretti P.J., Halfon O., Cardinaux J.R. 2003. CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J. Biol. Chem. 278, 36,959–36,965.
Chun K.S., Surh Y.J. 2004. Signal transduction pathways regulating cyclooxygenase-2 expression: Potential molecular targets for chemoprevention. Biochem. Pharmacol. 68, 1089–1100.
Gorgoni B., Caivano M., Arizmendi C., Poli V. 2001. The transcription factor C/EBPβ is essential for inducible expression of the COX-2 gene in macrophages but not in fibroblasts. J. Biol. Chem. 276, 40,769–40,777.
Guo Y.S., Hellmich M.R., Wen X.D., Townsend C.M. 2001. Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J. Biol. Chem. 276, 22,941–22,947.
Nie M., Pang L., Inoue H., Knox A.J. 2003. Transcriptional regulation of cyclooxygenase 2 by bradykinin and interleukin-1β in human airway smooth muscle cells: Involvement of different promoter elements, transcription factors, and histone H4 acetylation. Mol. Cell Biol. 23, 9233–9244.