Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1−26

Chemistry & Biology - Tập 5 - Trang 217-228 - 1998
Ranabir Sinha Roy1, Soyoun Kim2, James D Baleja2, Christopher T Walsh1
1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
2Department of Biochemistry, Tufts University School of Medicine, Boston, MA, 02111, USA

Tài liệu tham khảo

Kolter, 1992, Genetics of ribosomally synthesized peptide antibiotics, Annu. Rev. Microbiol., 141, 10.1146/annurev.mi.46.100192.001041 Jack, 1997, Bacteriocins of gram-positive bacteria, Microbiol. Rev., 59, 171, 10.1128/MMBR.59.2.171-200.1995 Moreno, 1995, Microcins, 307 Davagnino, 1986, The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine, Proteins: Struck Funct. Genet., 1, 230, 10.1002/prot.340010305 Bayer, 1993, Posttranslational backbone modifications in the ribosomal biosynthesis of the glycine-rich antibiotic microcin 1317, Angew. Chem. Int. Ed. Eng/., 32, 1336, 10.1002/anie.199313361 Yorgey, 1993, The maturation pathway of microcin 817, a peptide inhibitor of DNA gyrase, Mol. Microbiol., 9, 897, 10.1111/j.1365-2958.1993.tb01747.x Yorgey, 1994, Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor, 91, 4519 Li, 1996, From peptide precursors to oxazole and thiazole-containing peptide antibiotics: Microcin 1317 synthase, Science, 274, 1188, 10.1126/science.274.5290.1188 Garrido, 1988, The export of the DNA replication inhibitor microcin 817 provides immunity for the host cell, EMBO J., 7, 1853, 10.1002/j.1460-2075.1988.tb03018.x Fath, 1993, ABC transporters: Bacterial exporters, Microbiol. Rev., 57, 995, 10.1128/MMBR.57.4.995-1017.1993 San Millán, 1985, Cloning and mapping of the genetic determinants for microcin-1317, J. Bacteriol., 163, 275 San Millán, 1985, Plasmid genes required for microcin B-17 production, J. Bacteriol., 163, 1016, 10.1128/JB.163.3.1016-1020.1985 den Blaauwen, 1996, Sec-dependent preprotein translocation in bacteria, Arch. Microbiol., 165, 1, 10.1007/s002030050289 Madison, 1997, The leader peptide is essential for the post-translational modification of the DNA gyrase inhibitor microcin 1317, Mol. Microbiol., 23, 161, 10.1046/j.1365-2958.1997.2041565.x Hubbard, 1989, Vitamin-K-dependent carboxylation — in vitro modification of synthetic peptides containing the γ-carboxylation recognition site, J. Biol. Chem., 264, 14145, 10.1016/S0021-9258(18)71654-2 Huber, 1990, Identification of amino acids in the γ-carboxylation recognition site on the propeptide of prothrombin, J. Biol. Chem., 265, 12467, 10.1016/S0021-9258(19)38369-3 Furie, 1988, The molecular basis of blood-coagulation, Cell, 53, 505, 10.1016/0092-8674(88)90567-3 de Vos, 1995, Maturation pathway of nisin and other lantibiotics: Post translationally modified antimicrobial peptides exported by gram-positive bacteria, Mol. Microbiol., 17, 427, 10.1111/j.1365-2958.1995.mmi_17030427.x van Belkum, 1997, Doubleglycine-type leader peptides direct secretion of bacteriocins by ABC transporters: Colicin V secretion in lactococcus lactis, Mol. Microbiol., 23, 1293, 10.1046/j.1365-2958.1997.3111677.x Chou, 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol., 47, 45 Woody, 1996, Theory of circular dichroism of proteins, 25 Szypersk, 1992, Determination of scalar coupling constant by inverse fourier transform of in-phase multiplets, J. Magn. Res., 99, 552 Merutka, 1995, ‘Random coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. l, J. Biomol. NMR, 5, 14, 10.1007/BF00227466 Wishart, 1991, Relationship between nuclear magnetic resonance chemical shift and protein secondary structure, J. Mol. Biol., 222, 311, 10.1016/0022-2836(91)90214-Q Hyberts, 1992, The solution structure of eglin C based on measurements of many NOEs and coupling constants and its comparison with X-ray structures, Protein Sci., 1, 736, 10.1002/pro.5560010606 Detlefsen, 1991, Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR, Biochemistry, 30, 9040, 10.1021/bi00101a019 Wüthrich, 1986 Laskowski, 1993, PROCHECK: A program to check the stereochemical quality of protein structures, J. Appl. Crystallogr., 26, 283, 10.1107/S0021889892009944 Ulrich, 1988, Vitamin K-dependent carboxylation: a synthetic peptide based upon the γ-carboxylation recognition site sequence of the prothrombin propeptide is an active substrate for the carboxylase in vitro, J. Biol. Chem., 263, 9697, 10.1016/S0021-9258(19)81574-0 Sinha Roy, 1998, Mutational analysis of posttranslational heterocycle biosynthesis in the gyrase inhibitor microcin B17: Distance dependence from propeptide and tolerance for substitution in a GSCG cyclizable sequence, Biochemistry, 37, 4125, 10.1021/bi9728250 Marqusee, 1987, Helix stabilization by Glu ... Lys+ salt bridges in short peptides of de novo design, 84, 8898 Lyu, 1989, The role of ion-pairs in a-helix stability- 2 new designed helical peptides, J. Am. Chem. Soc., 111, 2733, 10.1021/ja00189a067 Scholtz, 1993, The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide, Biochemistry, 32, 9668, 10.1021/bi00088a019 Yorgey, 1993, The structure and biosynthesis of microcin B17, a novel DNA gyrase inhibitor Jung, 1991, Lantibiotics - ribosomally synthesized biologically active polypeptides containing sulfide bridges and α,β-didehydro-amino acids, Angew. Chem. Ink Ed. Engl., 30, 1051, 10.1002/anie.199110513 Vizán, 1991, The peptide antibiotic microcin B17 induces double-stranded cleavage of DNA mediated by E. coli. DNA gyrase, EMBO J., 10, 467, 10.1002/j.1460-2075.1991.tb07969.x Cheng, 1995, Conformation of the propeptide domain of factor IX, Biochim. Biophys. Acta, 1245, 227, 10.1016/0304-4165(95)00080-U van den Hooven, 1997, Structural features of the final intermediate in the biosynthesis of the lantibiotic nisin. Influence of the leader peptide, Biochemistry, 36, 14137, 10.1021/bi9713106 Sanford, 1991, Structure of the propeptide of prothrombin containing the γ-carboxylation recognition site determined by two dimensional NMR spectroscopy, Biochemistry, 30, 9835, 10.1021/bi00105a004 Sönnichsen, 1992, Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide, Biochemistry, 31, 8790, 10.1021/bi00152a015 Najbar, 1997, Conformational analysis of LYS(11–36), a peptide derived from the (3-Sheet region of T4 lysozyme, in TFE and SDS, Biochemistry, 36, 11525, 10.1021/bi970730s Breil, 1993, DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin, J. Bacteriol., 175, 3693, 10.1128/jb.175.12.3693-3702.1993 Lethbridge, 1989, The structure of trifolitoxin Dunne, 1996, Structure of the membrane binding domain of CTP: phosphocholine cytidyltransferase, Biochemistry, 35, 11975, 10.1021/bi960821+ Blumenthal, 1985, Identification of the calmodulin-binding domain of skeletal-muscle myosin light chain kinase, 82, 3187 Takio, 1986, Amino-acid sequence of rabbit-muscle myosin light chain kinase, Biochemistry, 25, 8049, 10.1021/bi00372a038 McCafferty, 1997, Mutational analysis of potential zinc-binding residues in the active site of the enterococcal d-Ala-d-Ala dipeptidase VanX, Biochemistry, 36, 10498, 10.1021/bi970543u Fields, 1990, Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pep. Protein Res., 35, 161, 10.1111/j.1399-3011.1990.tb00939.x Cavanagh, 1996 Ludvigsen, 1992, Positive theta-angles in proteins by nuclear magnetic resonance spectroscopy, J. Biomol. NMR, 2, 227, 10.1007/BF01875318 Freedman, 1996, Structure and function of the epidermal growth factor domain of P-selectin, Biochemistry, 35, 13733, 10.1021/bi9610257 Freedman, 1995, Structure of the calcium ion-bound γ-carboxyglutamic acid-rich domain of factor IX, Biochemistry, 34, 12126, 10.1021/bi00038a005 Sambrook, 1989 Deng, 1992, Site-directed mutagenesis of virtually any plasmid by eliminating a unique site, Anal. Biochem., 200, 81, 10.1016/0003-2697(92)90280-K