Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications
Tài liệu tham khảo
International Energy Agency Report, 2015, 10.1787/weo-2015-en
United Nations Framework Convention on Climate Change
European Commission, 2015
International Energy Agency, Global EV Outlook 2016
International Energy Agency, Global EV Outlook
Amsterdam Round Tables and McKinsey & Company
California Institute of Technology
World Wide Fund – WWF
UK Energy Research Centre
Bustamante, 2016, Life cycle assessment of jointly produced solar energy materials: challenges and best practices, Sol. Energy Mater. Sol. Cells, 156, 11, 10.1016/j.solmat.2016.05.007
Moss
Moss, 2013, The potential risks from metals bottlenecks to the deployment of strategic energy technologies, Energ Policy, 55, 556, 10.1016/j.enpol.2012.12.053
Moss
Zhang, 2016, Coercivity enhancement of Nd-Fe-B sintered magnets with intragranular adding (Pr, Dy, Cu)-Hx powders, J. Magn. Magn. Mater., 399, 159, 10.1016/j.jmmm.2015.09.071
Riba, 2016, Rare-earth-free propulsion motors for electric vehicles: a technology review, Renew. Sust. Energ. Rev., 57, 367, 10.1016/j.rser.2015.12.121
Stegen, 2015, Heavy rare earths, permanent magnets, and renewable energies: an imminent crisis, Energ Policy, 79, 1, 10.1016/j.enpol.2014.12.015
Lucas, 2015, 213
European Rare Earths Competency Network (ERECON)
Alonso, 2012, Evaluating rare earth element availability: a case with revolutionary demand from clean technologies, Environ. Sci. Technol., 46, 3406, 10.1021/es203518d
Nansai, 2014, Global flow of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum, Environ. Sci. Technol., 48, 1391, 10.1021/es4033452
De Boer, 2013, Scarcity of rare earths elements, ChemSusChem, 6, 2045, 10.1002/cssc.201200794
Baldi, 2014, Clean energy industries and rare earth materials: economic and financial issues, Energ Policy, 66, 53, 10.1016/j.enpol.2013.10.067
Golev, 2014, Rare earths supply chain: current status, constraints and opportunities, Resour. Policy, 41, 52, 10.1016/j.resourpol.2014.03.004
Habib, 2014, Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling, J. Clean. Prod., 84, 348, 10.1016/j.jclepro.2014.04.035
Massari, 2013, Rare earth elements as critical raw materials: focus on international markets and future strategies, Resour. Policy, 38, 36, 10.1016/j.resourpol.2012.07.001
Achzet, 2013, How to evaluate raw material supply risk — an overview, Resour. Policy, 38, 435, 10.1016/j.resourpol.2013.06.003
Glöser, 2015, Raw material criticality in the context of classical risk assessment, Resour. Policy, 44, 35, 10.1016/j.resourpol.2014.12.003
European Commission
US Department of Energy
Goe, 2014, Identifying critical materials for photovoltaic in the US: a multi-metric approach, Appl. Energy, 123, 387, 10.1016/j.apenergy.2014.01.025
Rademaker, 2013, Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling, Environ. Sci. Technol., 47, 10129, 10.1021/es305007w
Peiró, 2013, Material flow analysis of scares metals: sources, functions, end-uses and aspects for future supply, Environ. Sci. Technol., 47, 2939, 10.1021/es301519c
Graedel, 2015, On the materials basis of modern society, PNAS, 112, 6295, 10.1073/pnas.1312752110
Nassar, 2015, Limitation to elemental substitution as exemplified by the platinum-group metals, Green Chem., 17, 2226, 10.1039/C4GC02197E
Pavel, 2016, Critical raw materials in lighting applications: substitution opportunities and implication on their demand, Phys. Status Solidi A, 216, 2937, 10.1002/pssa.201600594
Smith, 2016, Multifaced material substitution: the case of NdFeB magnets, 2010–2015, JOM, 7, 1964, 10.1007/s11837-016-1913-2
Graedel, 2002, Material substitution: a resource supply perspective, Resour. Conserv. Recycl., 34, 107, 10.1016/S0921-3449(01)00097-0
Ayres, 2007, On the practical limits to substitution, Ecol. Econ., 61, 115, 10.1016/j.ecolecon.2006.02.011
Nakamura, 2011, Managing the scarcity of chemical elements, Nat. Mater., 10, 158, 10.1038/nmat2969
Powell, 2011, Sparing the rare earths: potential shortages of useful metals inspire scientists to seek alternatives for magnet technologies, Sci. News, 180, 18
Kumar, 2014, Electric propulsion system for electric vehicular technology: a review, Renew. Sust. Energ. Rev., 29, 924, 10.1016/j.rser.2013.09.014
Widmer, 2015, Electric vehicle traction motors without rare earth magnets, Sustain. Mater. Technol., 3, 7
Gutfleisch, 2011, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient, Adv. Mater., 23, 821, 10.1002/adma.201002180
Speirs
Thiel
Fraunhofer IAO
CRM_Innonet, 2015, Substitution of Critical raw Materials
Paulsen
Els
INSG insight
Benecki
Roskill Information Services, 2015
Shepard
International Energy Agency
Zhou
Buchert
The Boston Consulting Group
EU FP7 Marie-Curie Initial Training Network (EREAN)
Hoenderdaal, 2013, Can a dysprosium shortage threaten green energy technologies?, Energy, 49, 344, 10.1016/j.energy.2012.10.043
PRNewswire
European Commission
E-Magnets UK
Binnemans, 2013, Recycling of rare earths: a critical review, J. Clean. Prod., 51, 1, 10.1016/j.jclepro.2012.12.037
C.C. Pavel, R. Lacal-Arántegui, A. Marmier, E. Tzimas, D. Schüler, M. Buchert, D. Blagoeva, Role of rare earths in permanent magnets and review of substitution opportunities in wind turbines, Manuscript submitted for publication to Resour. Policy. (2017) (MS Ref No JRPO_2017_7).
Lacal-Arántegui, 2015, Materials use in electricity generators in wind turbines — state-of-the-art and future specification, J. Clean. Prod., 87, 275, 10.1016/j.jclepro.2014.09.047
Ruland, 2015
Widmer
Green Car Congress press release
MotorBrain press release
E-mobil BW
Hackmann, 2013, Comparison of the performance capabilities and impacts on production of different e-traction motors: synchronous machine, PM machine, induction machine and reluctance machine
Continental Corporation, Axle Drive System
Speed 2E project
Kakihara, 2013, Rotor Structure in 50kW Spoke-type Interior Permanent Magnet Synchronous Motor With Ferrite Permanent Magnets for Automotive Applications, 606
Lay
Yaskawa Electric Corporation news release
Green Car Congress press release
Stoll, 2013
VENUS FP7 EU project
Hornick
