Role of silicon on formation and growth of intermetallic phases during rapid Fe–Zn alloying reaction

Materials Today Advances - Tập 18 - Trang 100368 - 2023
Seung-Chang Han1, Dario Ferreira Sanchez2, Daniel Grolimund2, Sang-Ho Uhm3, Du-Youl Choi3, Hong-Chul Jeong3, Tea-Sung Jun1,4
1Department of Mechanical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
2Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
3Welding and Joining Research Group, Steel Solution Marketing Department, POSCO, Incheon, 21985, Republic of Korea
4Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Republic of Korea

Tài liệu tham khảo

Joseph, 1999, Liquid metal embrittlement: a state-of-the-art appraisal, Eur. Phys. J. Appl. Phys., 5, 19, 10.1051/epjap:1999108 Kolman, 2018, A review of recent advances in the understanding of liquid metal embrittlement, Corrosion, 75, 42, 10.5006/2904 Fernandes, 1997, Mechanisms of liquid metal induced embrittlement, Int. Mater. Rev., 42, 251, 10.1179/imr.1997.42.6.251 Fernandes, 1994, Failure by liquid metal induced embrittlement, Eng. Fail. Anal., 1, 51, 10.1016/1350-6307(94)90029-9 Gordon, 1982, An, the mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals, Metall. Trans. A, 13, 457, 10.1007/BF02643354 Gertsman, 2001, Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys, Acta Mater., 49, 1589, 10.1016/S1359-6454(01)00064-7 Lynch, 1988, Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36, 2639, 10.1016/0001-6160(88)90113-7 Alexandreanu, 2006, The role of stress in the efficacy of coincident site lattice boundaries in improving creep and stress corrosion cracking, Scripta Mater., 54, 1047, 10.1016/j.scriptamat.2005.11.051 Koyama, 2012, Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel, Scripta Mater., 66, 459, 10.1016/j.scriptamat.2011.12.015 Oudriss, 2012, The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel, Scripta Mater., 66, 37, 10.1016/j.scriptamat.2011.09.036 Kirchheim, 2010, Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations, Scripta Mater., 62, 67, 10.1016/j.scriptamat.2009.09.037 Ashiri, 2015, Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels, Scripta Mater., 109, 6, 10.1016/j.scriptamat.2015.07.006 Ashiri, 2016, Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels, Scripta Mater., 114, 41, 10.1016/j.scriptamat.2015.11.027 Razmpoosh, 2018, Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: the role of stress and grain boundaries, Mater. Char., 145, 627, 10.1016/j.matchar.2018.09.018 Lee, 2012, Liquid-metal-induced embrittlement of Zn-coated hot stamping steel, Metall. Mater. Trans. A, 43, 5122, 10.1007/s11661-012-1316-0 Takahashi, 2017 Ximenes, 2020, Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions, J. Mater. Res. Technol., 9, 629, 10.1016/j.jmrt.2019.11.003 Janik, 2016, Zn diffusion and α-Fe(Zn) layer growth during annealing of Zn-coated B steel, Metall. Mater. Trans. A, 47, 400, 10.1007/s11661-015-3203-y Lee, 2019, Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized TWinning-Induced Plasticity (TWIP) steel sheets, Mater. Char., 147, 233, 10.1016/j.matchar.2018.11.008 Murugan, 2019, Critical design parameters of the electrode for liquid metal embrittlement cracking in resistance spot welding, Weld. World, 63, 1613, 10.1007/s40194-019-00797-y DiGiovanni, 2020, Role of spot weld electrode geometry on liquid metal embrittlement crack development, J. Manuf. Process., 49, 1, 10.1016/j.jmapro.2019.11.015 Ghatei Kalashami, 2020, The effect of silicon content on liquid-metal-embrittlement susceptibility in resistance spot welding of galvanized dual-phase steel, J. Manuf. Process., 57, 370, 10.1016/j.jmapro.2020.07.008 Marder, 2000, The metallurgy of zinc-coated steel, Prog. Mater. Sci., 45, 191, 10.1016/S0079-6425(98)00006-1 Tumuluru, 2019, Effect of silicon and retained austenite on the liquid metal embrittlement cracking behavior of GEN3 and high-strength automotive steels, Weld. J., 98, 351s, 10.29391/2019.98.029 Hong, 2020, Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP steels: importance of Fe-Zn alloying reaction, Surf. Coat. Technol., 393, 10.1016/j.surfcoat.2020.125809 Kalashami, 2020, The role of internal oxides on the liquid metal embrittlement cracking during resistance spot welding of the dual phase steel, Metall. Mater. Trans. A, 51, 2180, 10.1007/s11661-020-05702-7 Kobayashi, 2017, Effects of Si solid solution in Fe substrate on the alloying reaction between Fe substrate and liquid Zn, ISIJ Int., 57, 2214, 10.2355/isijinternational.ISIJINT-2017-410 Tobiyama, 2003, Effect of the substrate compositions on the growth of Fe-Al interfacial layer formed during hot dip galvanizing, Tetsu-To-Hagane, 89, 38, 10.2355/tetsutohagane1955.89.1_38 Fife, 2012, Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy, J. Synchrotron Radiat., 19, 352, 10.1107/S0909049512003287 De Nolf, 2014, XRDUA: crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction, J. Appl. Crystallogr., 47, 1107, 10.1107/S1600576714008218 Perez, 2007, IPython: a system for interactive scientific computing, Comput. Sci. Eng., 9, 21, 10.1109/MCSE.2007.53 Hunter, 2007, Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55 Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37 Thyng, 2016, True colors of oceanography guidelines for effective and accurate colormap selection, Oceanography, 29, 9, 10.5670/oceanog.2016.66 Touloukian, 1975, 1443 Bhattacharya, 2021, Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-Assisted liquid metal embrittlement, Mater. Sci. Eng., A, 804, 10.1016/j.msea.2020.140391 DiGiovanni, 2021, Occurrence of sub-critical heat affected zone liquid metal embrittlement in joining of advanced high strength steel, J. Mater. Process. Technol., 288, 10.1016/j.jmatprotec.2020.116917 Bhattacharya, 2022, Influence of selected alloying variations on liquid metal embrittlement susceptibility of quenched and partitioned steels, Mater. Des., 224, 10.1016/j.matdes.2022.111356 Dong, 2022, Role of Si content in the element segregation of galvanized QP980 advanced high strength steel, J. Occup. Med., 74, 2369 Brown, 1962, The structure of the [delta]-phase in the transition metal-zinc alloy systems, Acta Crystallogr., 15, 608, 10.1107/S0365110X62001528 Hong, 1997, Transmission electron microscopy of the iron-zinc δ1 intermetallic phase, Scripta Mater., 36, 1423, 10.1016/S1359-6462(97)00030-4 Belin, 2000, Synthesis and crystal structure determinations in the Γ and δ phase domains of the iron–zinc system: electronic and bonding analysis of Fe13Zn39 and FeZn10, a subtle deviation from the hume–rothery standard?, J. Solid State Chem., 151, 85, 10.1006/jssc.2000.8626 Koster, 1981, Structure of the cubic iron-zinc phase Fe22Zn78, Acta Crystallogr. B, 37, 1905, 10.1107/S056774088100753X Cho, 2013, Influence of gas atmosphere dew point on the galvannealing of CMnSi TRIP steel, Metall. Mater. Trans. A, 44, 5081, 10.1007/s11661-013-1867-8 Kozdras, 1989, Silicon-induced destabilization of galvanized coatings in the sandelin peak region, Metallography, 22, 253, 10.1016/0026-0800(89)90006-2 Sha, 2010, Experimental investigation and thermodynamic reassessment of the Fe–Si–Zn system, Calphad, 34, 405, 10.1016/j.calphad.2010.07.006 Su, 2001, 450 °C isothermal section of the Fe-Zn-Si ternary phase diagram, Can. Metall. Q., 40, 377, 10.1179/cmq.2001.40.3.377 Su, 2005, Thermodynamic calculation of the Fe–Zn–Si system, J. Alloys Compd., 396, 156, 10.1016/j.jallcom.2004.12.031 Faghri, 2020 Jeon, 2021, Reversible disorder-order transitions in atomic crystal nucleation, Science, 371, 498, 10.1126/science.aaz7555