Role of silicon on formation and growth of intermetallic phases during rapid Fe–Zn alloying reaction
Tài liệu tham khảo
Joseph, 1999, Liquid metal embrittlement: a state-of-the-art appraisal, Eur. Phys. J. Appl. Phys., 5, 19, 10.1051/epjap:1999108
Kolman, 2018, A review of recent advances in the understanding of liquid metal embrittlement, Corrosion, 75, 42, 10.5006/2904
Fernandes, 1997, Mechanisms of liquid metal induced embrittlement, Int. Mater. Rev., 42, 251, 10.1179/imr.1997.42.6.251
Fernandes, 1994, Failure by liquid metal induced embrittlement, Eng. Fail. Anal., 1, 51, 10.1016/1350-6307(94)90029-9
Gordon, 1982, An, the mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals, Metall. Trans. A, 13, 457, 10.1007/BF02643354
Gertsman, 2001, Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys, Acta Mater., 49, 1589, 10.1016/S1359-6454(01)00064-7
Lynch, 1988, Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36, 2639, 10.1016/0001-6160(88)90113-7
Alexandreanu, 2006, The role of stress in the efficacy of coincident site lattice boundaries in improving creep and stress corrosion cracking, Scripta Mater., 54, 1047, 10.1016/j.scriptamat.2005.11.051
Koyama, 2012, Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel, Scripta Mater., 66, 459, 10.1016/j.scriptamat.2011.12.015
Oudriss, 2012, The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel, Scripta Mater., 66, 37, 10.1016/j.scriptamat.2011.09.036
Kirchheim, 2010, Revisiting hydrogen embrittlement models and hydrogen-induced homogeneous nucleation of dislocations, Scripta Mater., 62, 67, 10.1016/j.scriptamat.2009.09.037
Ashiri, 2015, Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels, Scripta Mater., 109, 6, 10.1016/j.scriptamat.2015.07.006
Ashiri, 2016, Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels, Scripta Mater., 114, 41, 10.1016/j.scriptamat.2015.11.027
Razmpoosh, 2018, Liquid metal embrittlement in laser lap joining of TWIP and medium-manganese TRIP steel: the role of stress and grain boundaries, Mater. Char., 145, 627, 10.1016/j.matchar.2018.09.018
Lee, 2012, Liquid-metal-induced embrittlement of Zn-coated hot stamping steel, Metall. Mater. Trans. A, 43, 5122, 10.1007/s11661-012-1316-0
Takahashi, 2017
Ximenes, 2020, Phase transformation temperatures and Fe enrichment of a 22MnB5 Zn-Fe coated steel under hot stamping conditions, J. Mater. Res. Technol., 9, 629, 10.1016/j.jmrt.2019.11.003
Janik, 2016, Zn diffusion and α-Fe(Zn) layer growth during annealing of Zn-coated B steel, Metall. Mater. Trans. A, 47, 400, 10.1007/s11661-015-3203-y
Lee, 2019, Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized TWinning-Induced Plasticity (TWIP) steel sheets, Mater. Char., 147, 233, 10.1016/j.matchar.2018.11.008
Murugan, 2019, Critical design parameters of the electrode for liquid metal embrittlement cracking in resistance spot welding, Weld. World, 63, 1613, 10.1007/s40194-019-00797-y
DiGiovanni, 2020, Role of spot weld electrode geometry on liquid metal embrittlement crack development, J. Manuf. Process., 49, 1, 10.1016/j.jmapro.2019.11.015
Ghatei Kalashami, 2020, The effect of silicon content on liquid-metal-embrittlement susceptibility in resistance spot welding of galvanized dual-phase steel, J. Manuf. Process., 57, 370, 10.1016/j.jmapro.2020.07.008
Marder, 2000, The metallurgy of zinc-coated steel, Prog. Mater. Sci., 45, 191, 10.1016/S0079-6425(98)00006-1
Tumuluru, 2019, Effect of silicon and retained austenite on the liquid metal embrittlement cracking behavior of GEN3 and high-strength automotive steels, Weld. J., 98, 351s, 10.29391/2019.98.029
Hong, 2020, Si effect on Zn-assisted liquid metal embrittlement in Zn-coated TWIP steels: importance of Fe-Zn alloying reaction, Surf. Coat. Technol., 393, 10.1016/j.surfcoat.2020.125809
Kalashami, 2020, The role of internal oxides on the liquid metal embrittlement cracking during resistance spot welding of the dual phase steel, Metall. Mater. Trans. A, 51, 2180, 10.1007/s11661-020-05702-7
Kobayashi, 2017, Effects of Si solid solution in Fe substrate on the alloying reaction between Fe substrate and liquid Zn, ISIJ Int., 57, 2214, 10.2355/isijinternational.ISIJINT-2017-410
Tobiyama, 2003, Effect of the substrate compositions on the growth of Fe-Al interfacial layer formed during hot dip galvanizing, Tetsu-To-Hagane, 89, 38, 10.2355/tetsutohagane1955.89.1_38
Fife, 2012, Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy, J. Synchrotron Radiat., 19, 352, 10.1107/S0909049512003287
De Nolf, 2014, XRDUA: crystalline phase distribution maps by two-dimensional scanning and tomographic (micro) X-ray powder diffraction, J. Appl. Crystallogr., 47, 1107, 10.1107/S1600576714008218
Perez, 2007, IPython: a system for interactive scientific computing, Comput. Sci. Eng., 9, 21, 10.1109/MCSE.2007.53
Hunter, 2007, Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55
Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37
Thyng, 2016, True colors of oceanography guidelines for effective and accurate colormap selection, Oceanography, 29, 9, 10.5670/oceanog.2016.66
Touloukian, 1975, 1443
Bhattacharya, 2021, Influence of the starting microstructure of an advanced high strength steel on the characteristics of Zn-Assisted liquid metal embrittlement, Mater. Sci. Eng., A, 804, 10.1016/j.msea.2020.140391
DiGiovanni, 2021, Occurrence of sub-critical heat affected zone liquid metal embrittlement in joining of advanced high strength steel, J. Mater. Process. Technol., 288, 10.1016/j.jmatprotec.2020.116917
Bhattacharya, 2022, Influence of selected alloying variations on liquid metal embrittlement susceptibility of quenched and partitioned steels, Mater. Des., 224, 10.1016/j.matdes.2022.111356
Dong, 2022, Role of Si content in the element segregation of galvanized QP980 advanced high strength steel, J. Occup. Med., 74, 2369
Brown, 1962, The structure of the [delta]-phase in the transition metal-zinc alloy systems, Acta Crystallogr., 15, 608, 10.1107/S0365110X62001528
Hong, 1997, Transmission electron microscopy of the iron-zinc δ1 intermetallic phase, Scripta Mater., 36, 1423, 10.1016/S1359-6462(97)00030-4
Belin, 2000, Synthesis and crystal structure determinations in the Γ and δ phase domains of the iron–zinc system: electronic and bonding analysis of Fe13Zn39 and FeZn10, a subtle deviation from the hume–rothery standard?, J. Solid State Chem., 151, 85, 10.1006/jssc.2000.8626
Koster, 1981, Structure of the cubic iron-zinc phase Fe22Zn78, Acta Crystallogr. B, 37, 1905, 10.1107/S056774088100753X
Cho, 2013, Influence of gas atmosphere dew point on the galvannealing of CMnSi TRIP steel, Metall. Mater. Trans. A, 44, 5081, 10.1007/s11661-013-1867-8
Kozdras, 1989, Silicon-induced destabilization of galvanized coatings in the sandelin peak region, Metallography, 22, 253, 10.1016/0026-0800(89)90006-2
Sha, 2010, Experimental investigation and thermodynamic reassessment of the Fe–Si–Zn system, Calphad, 34, 405, 10.1016/j.calphad.2010.07.006
Su, 2001, 450 °C isothermal section of the Fe-Zn-Si ternary phase diagram, Can. Metall. Q., 40, 377, 10.1179/cmq.2001.40.3.377
Su, 2005, Thermodynamic calculation of the Fe–Zn–Si system, J. Alloys Compd., 396, 156, 10.1016/j.jallcom.2004.12.031
Faghri, 2020
Jeon, 2021, Reversible disorder-order transitions in atomic crystal nucleation, Science, 371, 498, 10.1126/science.aaz7555