Role of oxidative stress in preeclampsia and intrauterine growth restriction

Journal of Obstetrics and Gynaecology Research - Tập 38 Số 4 - Trang 658-664 - 2012
İsmail Mert1, Ayla Sargın Oruç2, Serdar Yüksel3, Esra Şükran Çakar3, Ümran Büyükkağnıcı4, Abdullah Karaer5, Nuri Danışman2
1Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
2Departments of Obstetrics and Gynecology
3Genetics,
4Biochemistry, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara
5Department of Obstetrics and Gynecology, School of Medicine, Inonu University, Malatya, Turkey

Tóm tắt

Abstract

Aim:  The aim of the present study was to evaluate the role of oxidative stress and DNA damage in preeclampsia and intrauterine growth restriction (IUGR).

Material and Methods:  Twenty‐four patients with preeclampsia, 20 patients with IUGR fetus and 37 healthy pregnant women were enrolled in the study. The total oxidant status (TOS) and antioxidant status (TAS) of plasma were measured using a novel automated colorimetric measurement method. Sister chromatid exchange (SCE) and micronuclei analysis were performed on peripheral blood lymphocytes of cases and controls.

Results:  Women whose pregnancies were complicated with preeclampsia and IUGR had elevated levels of TOS and TAS when compared with healthy pregnant women (median TOS values: 9.73, 10.6 and 8.06, P = 0.001; median TAS values: 1. 77, 1.54 and 1.44, P < 0.001, respectively). The frequencies of SCE were only found to be increased in women with IUGR fetus compared with healthy pregnant women (8.81 vs 7.5, respectively, P = 0.02). Multivariable linear regression analysis for both TOS and TAS showed a significant relation between these variables and uric acid.

Conclusion:  Increased oxidative stress and antioxidative defense mechanisms may contribute to disease processes both in preeclampsia and IUGR.

Từ khóa


Tài liệu tham khảo

Sibai B, 2005, Pre‐eclampsia, Lancet, 365, 7785, 10.1016/S0140-6736(05)17987-2

10.1016/S0029-7844(01)01780-X

10.1016/j.ajog.2005.07.049

10.1095/biolreprod.102.014977

10.1016/j.clinbiochem.2005.08.008

10.1016/j.clinbiochem.2003.10.014

10.1016/S0165-1110(96)90018-4

Latt SA, 1980, Sister chromatid exchange analysis, Am J Hum Genet, 32, 297

10.1038/251156a0

10.1016/0165-1161(85)90015-9

10.1093/humupd/dml016

10.1016/j.placenta.2008.11.003

10.1007/s11010-008-9739-z

10.1067/mob.2001.116754

10.1053/plac.1999.0408

10.1016/j.ejogrb.2004.04.012

10.1016/0002-9378(94)90462-6

10.1016/j.diabres.2010.04.015

10.1016/j.freeradbiomed.2004.04.035

10.1007/s00418-004-0677-x

10.1186/1471-2431-4-14

10.1007/s00428-003-0903-2

10.1016/j.freeradbiomed.2005.02.017

10.1159/000106488

10.1111/j.1447-0756.2009.01063.x

10.1016/j.placenta.2007.11.001

10.1021/ja00197a042

Maples KR, 1988, Free radical metabolite of uric acid, J Biol Chem, 263, 1709, 10.1016/S0021-9258(19)77933-2

10.1016/S0891-5849(97)00010-5

10.1152/ajpcell.00593.2008

Parks DA, 1988, Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: A reevaluation, Am J Physiol, 254, 768

Norppa H, 2004, Cytogenetic biomarkers, IARC Sci Publ, 157, 179

10.1016/0891-5849(91)90078-H

10.1016/S0027-5107(02)00075-1

10.1002/em.2850180414

10.1016/j.mrfmmm.2006.11.017

10.1016/0165-7992(90)90137-9

10.1016/j.mrfmmm.2006.05.030

10.1016/j.ajog.2008.06.057

10.1007/s10552-010-9524-7