Vai trò của microRNA trong căng thẳng nhôm ở thực vật

Plant Cell Reports - Tập 33 - Trang 831-836 - 2014
Huyi He1,2, Longfei He1, Minghua Gu1
1College of Agronomy, Guangxi University, Nanning, People’s Republic of China
2Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, People’s Republic of China

Tóm tắt

Căng thẳng nhôm (Al) là một yếu tố chính hạn chế năng suất cây trồng. Triệu chứng chính của độc tính nhôm là ức chế sự phát triển rễ. Phản ứng của thực vật đối với nhôm đòi hỏi sự điều chỉnh chính xác của biểu hiện gen ở mức độ phiên mã và sau phiên mã. MicroRNA (miRNA) là các RNA phi mã có độ dài từ 20–23 nucleotide, có tác dụng thúc đẩy sự cắt đứt các mRNA mục tiêu. Chúng tôi đã tổng hợp một số miRNA ứng phó với Al đã được xác định, đặc biệt là đề xuất vai trò điều tiết của miR319, miR390, miR393, miR319a.2 và miR398 trong mạng lưới tín hiệu căng thẳng nhôm. Sự giao thoa giữa miRNA và các con đường tín hiệu cũng đã được thảo luận.

Từ khóa

#cuộc cắt đứt RNA #tín hiệu căng thẳng nhôm #microRNA #thực vật #biểu hiện gen

Tài liệu tham khảo

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297 Beauclair L, Yu A, Bouche N (2010) MicroRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–462 Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189 Bozhkov PV, Suarez MF, Filonov LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mell-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468 Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783 Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386 Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CI (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421 Clarkson DT (1965) The effects of aluminum and some trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29:309–315 Fahlgren N, Howell HD, Kasschau KD, Chapman EJ, Sul-livan CM, Cumbie J, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAS: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219 Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13:15826–15847 Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386 Hou L, Wang D, Baccarelli A (2011) Environmental chemicals and microRNAs. Mutat Res 714:105–112 Hou XW, Tong HY, Selby J, Dewitt J, Peng XX, He ZH (2005) Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol 139:1704–1716 Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 3:282–287 Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799 Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53 Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148 Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195 Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619 Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322 Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102:9412–9417 Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complemantarity to lin-14. Cell 75:843–854 Li T, Li H, Zhang YX, Liu JY (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedling of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833 Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832 Liu Q, Zhang YC, Wang CY (2009) Expression analysis of phytohormone regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728 Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminum with buckwheat. Nature 390:569–570 Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375 Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi M, Maize A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 221:104–1117 Pan JW, Zhu MY, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79 Reinhart BJ, Weinstein EG, Rhoades MW, Barte B, Bartel DP (2002) MicroRNAs in plants. Gene Dev 16:1616–1626 Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20 Si-Ammour A, Windels D, Arn-Bouloires E, Kutter C, Ailhas J, Meins F Jr, Vazquez F (2011) MiR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol 157:683–691 Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019 Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065 Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gene Dev 18:1187–1197 Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687 Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547 Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218 Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-like1 in Arabidopsis by miRNA-guided mRNA degradation. Curr Biol 13:784–789 Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361 Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182 Zhou ZS, Haung SJ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542 Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their different regulation by heavy metal. Plant Cell Environ 35:86–99