Role of mesenchymal-epithelial interactions in mammary gland development

Journal of Mammary Gland Biology and Neoplasia - Tập 1 - Trang 21-35 - 1996
Gerald R. Cunha1, Yun Kit Hom1
1Anatomy Department and Reproductive Endocrinology Center, University of California, San Francisco

Tóm tắt

The mammary gland is a hormone-target organ derived from epidermis and develops as a result of reciprocal mesenchymal-epithelial interactions. The induction of mammary differentiation from indifferent epidermal cells by mammary mesenchyme implies induction of the complement of hormone receptors characteristic of normal mammary epithelium in cells of the epidermis. Considering the facts that mammary epithelial differentiation is induced by mammary mesenchyme and that certain aspects of hormone response (androgen-induced mammary regression) are inextricably linked to mesenchymal-epithelial interactions, it is evident that the biology of the mammary gland arises from and is maintained via cell-cell interactions. As a corollary, perturbation of stromal-epithelial interactions in adulthood may play a role in mammary carcinogenesis and in turn may provide opportunities for differentiation therapy.

Tài liệu tham khảo

C. C. Boring, T. S. Squires, and T. Tong (1992). Cancer statistics, 1992.Ca Cancer J. Clin. 4219–38. G. R. Cunha, A. A. Donjacour, P. S. Cooke, S. Mee, R. M. Bigsby, S. J. Higgins, and Y. Sugimura (1987). The endocrinology and developmental biology of the prostate.Endocrine Rev. 8338–363. T. Sakakura (1991). New aspects of stroma-parenchyma relations in mammary gland differentiation.Int. Rev. Cytol. 125165–202. K. Haffen, M. Kedinger, and P. Simon-Assmann (1987). Mesenchyme-dependent differentiation of epithelial progenitor cells in the gut.J. Pediatr. Gastroenterol. Nutr. 614–23. T. Sakakura (1987). Mammary embryogensis. In C. W. Neville and M. C. Daniel (eds.),The Mammary Gland: Development, Regulation, and Function Plenum Press, New York, pp. 37–66. K. Kratochwil (1987). Tissue combination and organ culture studies in the development of the embryonic mammary gland. In R. B. L. Gwatkin (ed.),Developmental Biology: A Comprehensive Synthesis Plenum Press, New York, pp. 315–334. C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.),The Mammary Gland Development, Regulation and Function Plenum Press, New York, pp. 3–36. A. Raynaud (1961). Morphogenesis of the mammary gland. In S. K. Kon and A. T. Cowie (eds.),Milk: The Mammary Gland and Its Secretion Academic Press, New York, pp. 3–46. A. Propper (1972). Rôle du mésenchyme dans la différenciation de la glande mammaire chez l'embryon de lapin.Bull. Soc. Zool. Fr. 97505–512. B. I. Balinsky (1950). On the developmental processes in mammary glands and other epidermal structures.Trans. R. Soc. Edinb. 621–31. A. Y. Propper (1978). Wandering epithelial cells in rabbit embryo milk line.Dev. Biol. 67225–231. G. R. Cunha, P. Young, K. Christov, R. Guzman, S. Nandi, F. Talamantes, and G. Thordarson (1995). Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme.Acta Anat. 152195–204. J. Taylor-Papadimitriou and E. B. Lane (1987). Keratin expression in the mammary gland. In M. C. Neville and C. W. Daniel (eds.),The Mammary Gland: Development, Regulation, and Function Plenum Press, New York, pp. 181–215. T. Sakakura, Y. Nishizuka, and C. J. Dawe (1976). Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland.Science 1941439–1441. G. R. Cunha, P. Young, S. Hamamoto, R. Guzman, and S. Nandi (1992). Developmental response of adult mammary epithelial cells to various fetal and neonatal mesenchymes.Epithelial Cell Biol. 1105–118. K. Kratochwil (1975). Experimental analysis of the prenatal development of the mammary gland.Mod. Probl. Pediat. 151–15. R. Nusse and H. E. Varmus (1992). Wnt genes.Cell 691073–1087. K. Kratochwil and P. Schwartz (1976). Tissue interaction in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue of testosterone.Proc. Natl. Acad. Sci. USA 734041–4044. K. Korach (1994). Insights from the study of animals lacking functional estrogen receptor.Science 2661524–1527. Y. Matsui, S. A. Halter, J. T. Holt, B. L. M. Hogan, and R. J. Coffey (1990). Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice.Cell 611147–1155. C. Jhappan, C. Stahle, R. N. Harkins, N. Fausto, G. H. Smith, and G. T. Merlino (1990). TGFα overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas.Cell 611137–1146. E. P. Sandgren, N. C. Luetteke, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1990). Overexpression of TGFα in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast.Cell 611121–1135. G. Stamp, V. Fantl, R. Poulsom, S. Jamieson, R. Smith, G. Peters, and C. Dickson (1992). Nonuniform expression of a mouse mammary tumor virus-drivenint-2/Fgf-3 transgene in pregnancy-responsive breast tumors.Cell Growth Differ. 3929–938. J. W. Muller, F. S. Lee, C. Dickson, G. Peters, P. Pattengale, and P. Leder (1990). Theint-2 gene product acts as an epithelial growth factor in transgenic mice.EMBO J. 9907–913. A. S. Tsukamoto, R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus (1988). Expression of theint-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice.Cell 59619–625. D. F. Pierce, Jr., M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold, A. F. Purchio, C. W. Daniel, B. L. Hogan, and H. L. Moses (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1.Genes Dev. 72308–2317. T. P. Lin, R. C. Guzman, R. C. Osborn, G. Thordarson, and S. Nandi (1992). Role of endocrine, autocrine, and paracrine interactions in the development of mammary hyperplasia in Wnt-1 transgenic mice.Cancer Res. 524413–4419. K. Kratochwil (1977). Development and loss of androgen responsiveness in the embryonic rudiment of the mouse mammary gland.Dev. Biol. 61358–365. T. Sakakura, Y. Sakagami, and Y. Nishizuka (1982). Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis.Dev. Biol. 91202–207. K. B. DeOme, L. J. Faulkin, Jr., and H. A. Bern (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice.Cancer Res. 19515–520. T. Sakakura, I. Kusano, M. Kusakabe, Y. Inaguma, and Y. Nishizuka (1987). Biology of mammary fat pad in fetal mouse: Capacity to support development of various fetal epitheliain vivo.Development 100421–430. R. Narbaitz, W. E. Stumpf, and M. Sar (1980). Estrogen receptors in mammary gland primordia of fetal mouse.Anat. Embryol. 158161–166. S. Z. Haslam and G. Shyamala (1981). Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland.Endocrinology 108825–830. M. J. Bissell and H. G. Hall (1987). Form and function in the mammary gland: The role of extracellular matrix. In M. C. Neville and C. W. Daniel (eds.),The Mammary Gland: Development, Regulation, and Function Plenum Press, New York, pp. 97–146. S. Nandi (1958). Endocrine control of mammary gland development and function in the C3H/He Crgl mouse.J. Natl. Cancer Inst. 211039–1063. R. L. Ceriani (1970). Fetal mammary gland differentiationin vitro in response to hormones. I. Morphological findings.Dev. Biol. 21506–529. R. L. Ceriani (1970). Fetal mammary gland differentiationin vitro in response to hormones. II. Biochemical findings.Dev. Biol. 21530–546. H. Nagasawa and T. Mori (1988). Long-term effects of perinatal exposure to hormones and related substances on normal and neoplastic growth of murine mammary glands. In T. Mori and H. Nagasawa (eds.),Toxicity of Hormones in Perinatal Life CRC Press, Boca Raton, Florida pp. 81–88. S. Z. Haslam and K. A. Nummy (1992). The ontogeny and cellular distribution of estrogen receptors in normal mouse mammary gland.J. Steroid Biochem. Mol. Biol. 42589–595. B. Mintz (1978). Genetic mosaicism andin vivo analyses of neoplasia and differentiation. In G. Saunders (ed.),Cell Differentiation and Neoplasia Raven Press, New York, pp. 27–56. G. R. Cunha, N. Hayashi, and Y. C. Wong (1991). Regulation and growth of normal adult and neoplastic epithelial by inductive mesenchyme. In J. T. Issacs (ed.),Prostate Cancer: Cell and Molecular Mechanisms in Diagnosis and Treatment Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 73–90. J. J. De Cosse, C. L. Gossens, J. F. Kuzma, and B. R. Unsworth (1975). Embryonic inductive tissues that cause histological differentiation of murine mammary carcinomain vitro.J. Natl. Cancer Inst. 54913–921. S. Sakaguchi, T. Takahashi, T. Sakakura, Y. Sakagami, Y. Nishizuka, and H. Tanaka (1981). Earlier appearance of murine mammary tumor virus-associated antigens in duct-alveolus nodules induced by transplantation of fetal salivary mesenchyme into C3H mouse mammary glands.Gann 72982–987. T. Sakakura (1983). Epithelial-mesenchymal interactions in mammary gland development and its perturbation in relation to tumorigenesis. In M. A. Rich, J. C. Hager, and P. Furmanski (eds.),Understanding Breast Cancer: Clinical and Laboratory Concepts Marcel Dekker, New York, pp. 261–284. T. Sakakura, Y. Sakagami, and Y. Nishizuka (1981). Accelerated mammary cancer development by fetal salivary mesenchyme isografted to adult mouse mammary epithelium.J. Natl. Cancer Inst. 66953–959. G. B. Silberstein and C. W. Daniel (1987). Reversible inhibition of mammary gland growth by transforming growth factor-beta.Science 237291–293. C. W. Daniel and S. D. Robinson (1992). Regulation of mammary growth and function by TGF-beta.Mol. Reprod. Dev. 32145–151. S. P. Ethier and R. M. Van de Velde (1990). Secretion of a TGF-β-like growth inhibitor by normal rat mammary epithelial cellsin vitro.J. Cell. Physiol. 14215–20. C. Knabbe, M. E. Lippman, L. M. Wakefield, K. C. Flanders, A. Kasid, R. Derynck, and R. B. Dickson (1987). Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells.Cell 48417–428. C. W. Daniel, G. B. Silberstein, K. Van Horn, P. Strickland, and S. Robinson (1989). TGF-β1-Induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization.Dev. Biol. 13520–30. S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mammary gland development.Development 113867–878. G. B. Silberstein, S. Strickland, S. Coleman, and C. W. Daniel (1990). Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland.J. Cell Biol. 1102209–2219. G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1.Dev. Biol. 152354–362. S. D. Robinson, A. B. Roberts, and C. W. Daniel (1993). TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy.J. Cell Biol. 120245–251. A. W. Sudlow, C. J. Wilde, and R. D. Burgoyne (1994). Transforming growth factor-beta 1 inhibits casein secretion from differentiating mammary-gland explants but not from lactating mammary cells.Biochem J. 304333–336. T. Yamamoto, H. Komura, K. Morishige, C. Tadokoro, M. Sakata, H. Kurachi, and A. Miyake (1994). Involvement of autocrine mechanism of transforming growth factor-beta in the functional differentiation of pregnant mouse mammary gland.Eur. J. Endocrinol. 130302–307. M. Mieth, F. D. Boehmer, R. Ball, B. Groner, and R. Grosse (1990). Transforming growth factor-beta inhibits lactogenic hormone induction of beta-casein expression in HC11 mouse mammary epithelial cells.Growth Factors 49–15. C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen, A. B. Roberts, G. H. Smith, and G. Merlino (1993). Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.EMBO J. 121835–1845. D. S. Liscia, G. Merlo, F. Ciardiello, N. Kim, G. H. Smith, R. Callahan, and D. S. Salomon (1990). Transforming growth factor-alpha messenger RNA localization in the developing adult rat and human mammary gland byin situ hybridization.Dev. Biol. 140123–131. S. M. Snedeker, C. F. Brown, and R. P. DiAugustine (1991). Expression and functional properties of transforming growth factor α and epidermal growth factor during mouse mammary gland ductal morphogenesis.Proc. Natl. Acad. Sci. USA 88276–280. E. M. Valverius, S. E. Bates, M. R. Stampfer, R. Clark, F. McCormick, D. S. Salomon, M. E. Lippman, and R. B. Dickson (1989). Transforming growth factor alpha production and epidermal growth factor receptor expression in normal and oncogene transformed human mammary epithelial cells.Mol. Endocrinol 3203–214. W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulation of mammary epithelial cell growth in mice and rats.Endocrine Rev. 11494–523. B. K. Vonderhaar (1987). Local effects of EGF, alpha-TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary glandin vivo.J. Cell. Physiol. 132581–584. R. J. Coffey, Jr., K. S. Meise, Y. Matsui, B. L. Hogan, P. J. Dempsey, and S. A. Halter (1994). Acceleration of mammary neoplasia in transforming growth factor alpha transgenic mice by 7,12-dimethylbenzanthracene.Cancer Res. 541678–1683. S. A. Halter, P. Dempsey, Y. Matsui, M. K. Stokes, D. R. Graves, B. L. Hogan, and R. J. Coffey (1992). Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations.Am. J. Pathol. 1401131–1146. S. Sakai, M. Mizuno, T. Harigaya, K. Yamamoto, T. Mori, R. J. Coffey, and H. Nagasawa (1994). Cause of failure of lactation in mouse mammary tumor virus/human transforming growth factor alpha transgenic mice.Proc. Soc. Exp. Biol. Med. 205236–242. S. A. Aaronson, J. S. Rubin, P. W. Finch, J. Wong, C. Marchese, J. Falco, W. G. Taylor, and M. H. Kraus (1990). Growth factor-regulated pathways in epithelial cell proliferation.Am. Rev. Respir. Dis. 142S7–10. W. Imagawa, G. R. Cunha, P. Young, and S. Nandi (1994). Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.Biochem. Biophys. Res. Commun. 2041165–1169. T. R. Ulich, E. S. Yi, R. Cardiff, S. Yin, N. Bikhazi, R. Biltz, C. F. Morris, and G. F. Pierce (1994). Keratinocyte growth factor is a growth factor for mammary epitheliumin vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor.Am. J. Pathol. 144862–868. E. S. Yi, A. A. Bedoya, H. Lee, S. Kim, R. M. Housley, S. L. Aukerman, J. E. Tarpley, C. Starnes, C. Starnes, S. Yin, G. F. Pierce,et al. (1994). Keratinocyte growth factor causes cystic dilation of the mammary glands of mice. Interactions of keratinocyte growth factor, estrogen, and progesteronein vivo.Am. J. Pathol. 1451015–1022. T. R. Ulich, E. S. Yi, K. Longmuir, S. Yin, R. Biltz, C. F. Morris, R. M. Housley, and G. F. Pierce (1994). Keratinocyte growth factor is a growth factor for type II pneumocytesin vivo.J. Clin. Invest. 931298–1306. P. W. Finch, G. R. Cunha, J. S. Rubin, J. Wong, and D. Ron (1995). Pattern of KGF and KGFR expression during mouse fetal development suggests a role in mediating morphogenetic mesenchymal-epithelial interactions.Dev. Dynam. (in press).