Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica

Bioactive Materials - Tập 5 - Trang 66-73 - 2020
Burcu Karakuzu-Ikizler1, Pınar Terzioğlu2, Yeliz Basaran-Elalmis1, Bilge Sema Tekerek3, Sevil Yücel1
1Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, Istanbul, Turkey
2Department of Fiber and Polymer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
3Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Nişantaşı University, Istanbul, Turkey

Tài liệu tham khảo

Wang, 2007, Self-setting properties of a β-dicalcium silicate reinforced calcium phosphate cement, J. Biomed. Mater. Res. B Appl. Biomater., 82, 93, 10.1002/jbm.b.30709 Tripathi, 2019, Structural, physico-mechanical and in-vitro bioactivity studies on SiO2–CaO–P2O5–SrO–Al2O3 bioactive glasses, Mater. Sci. Eng. C, 94, 279, 10.1016/j.msec.2018.09.041 Fredholm, 2010, Strontium containing bioactive glasses: glass structure and physical properties, J. Non-Cryst. Solids, 2546, 10.1016/j.jnoncrysol.2010.06.078 Hench, 1971, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res., 5, 117, 10.1002/jbm.820050611 Sepulveda, 2001, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res., 58, 734, 10.1002/jbm.10026 Hench, 1996, Biological applications of bioactive glasses, Life Chem. Rep., 13, 187 Hench, 2010, Twenty-first century challenges for biomaterials, J. R. Soc. Interface, 7, S379 Hoppe, 2011, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32, 2757, 10.1016/j.biomaterials.2011.01.004 Kargozar, 2018, Bioactive glasses entering the mainstream, Drug Discov. Today, 23, 1700, 10.1016/j.drudis.2018.05.027 Karakuzu-İkizler, 2019, Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass, J. Australas. Ceram. Soc. Deliormanlı, 2015, Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med., 26, 1, 10.1007/s10856-014-5368-0 Rana, 2017, Development and characterization of gallium-doped bioactive glasses for potential bone cancer applications, ACS Biomater. Sci. Eng., 3, 3425, 10.1021/acsbiomaterials.7b00283 Ohtsuki, 1992, Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: its in vitro evaluation, J. Mater. Sci. Mater. Med., 3, 119, 10.1007/BF00705279 Ohura, 1992, Bioactivity of CaO·SiO2 glasses added with various ions, J. Mater. Sci. Mater. Med., 3, 95, 10.1007/BF00705275 Goel, 2011, Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses, Acta Biomater., 7, 4071, 10.1016/j.actbio.2011.06.047 Kaur, 2016, Magnesium and silver doped CaO–Na2 O–SiO2 –P2O5 bioceramic nanoparticles as implant materials, Ceram. Int., 42, 12651, 10.1016/j.ceramint.2016.05.001 Knabe, 2005, The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro, Clin. Oral Implant. Res., 16, 119, 10.1111/j.1600-0501.2004.01066.x Saboori, 2009, Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass, Mater. Sci. Eng. C, 29, 335, 10.1016/j.msec.2008.07.004 Soulié, 2009, Influence of Mg doping on the early steps of physico-chemical reactivity of sol–gel derived bioactive glasses in biological medium, Phys. Chem. Chem. Phys., 11, 10473, 10.1039/b913771h Chen, 2010, Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system, J. Biomed. Mater. Res. B Appl. Biomater., 93, 194 Moghanian, 2018, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int., 44, 9422, 10.1016/j.ceramint.2018.02.159 Erol, 2010, Characterization, and in vitro bioactivity of sol-gel-derived Zn, Mg, and Zn-Mg Co-doped bioactive glasses, Chem. Eng. Technol., 33, 1066, 10.1002/ceat.200900495 Ma, 2010, Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses, Colloids Surfaces B Biointerfaces, 81, 87, 10.1016/j.colsurfb.2010.06.022 Moya, 1994, In vitro formation of hydroxylapatite layer in a MgO-containing glass, J. Mater. Sci. Mater. Med., 5, 529, 10.1007/BF00124885 Hench, 1991, Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 74, 1487, 10.1111/j.1151-2916.1991.tb07132.x Liu, 2006, Preparation of mica/apatite glass-ceramics biomaterials, Mater. Sci. Eng. C, 26, 1390, 10.1016/j.msec.2005.08.017 Stábile, 2015, Thermal evolution of Na2O-K2O-CaO-SiO2-P2O5-Al2O3 glass system, and possible applications as biomedical devices, Procedia Mater. Sci., 8, 332, 10.1016/j.mspro.2015.04.081 Tripathi, 2015, Structural characterization and in vitro bioactivity assessment of SiO2–CaO–P2O5–K2O–Al2O3 glass as bioactive ceramic material, Ceram. Int., 41, 11756, 10.1016/j.ceramint.2015.05.143 Wu, 2011, Bioactive SrO-SiO2glass with well-ordered mesopores: characterization, physiochemistry and biological properties, Acta Biomater., 7, 1797, 10.1016/j.actbio.2010.12.018 Bahniuk, 2012, Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma, Biointerphases, 7, 1, 10.1007/s13758-012-0041-y Serra, 2002, Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses, J. Mater. Sci. Mater. Med., 1221, 10.1023/A:1021174912802 Mondal, 2013, Fabrication and characterization of ZrO2-CaO-P2O5-Na2O-SiO2 bioactive glass ceramics, J. Mater. Sci., 48, 1863, 10.1007/s10853-012-6956-3 Yucel, 2013, Preparation of melt derived 45S5 bioactive glass from rice hull ash and its characterization, Adv. Sci. Lett., 19, 3477, 10.1166/asl.2013.5228 Kalapathy, 2000, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73, 257, 10.1016/S0960-8524(99)00127-3 Hench, 1993 Babu, 2019, Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: impact of Ti4+on physico-mechanical and in vitro bioactivity, Ceram. Int., 45, 23715, 10.1016/j.ceramint.2019.08.087 Cannillo, 2010, Production of Bioglass® 45S5 - polycaprolactone composite scaffolds via salt-leaching, Compos. Struct., 92, 1823, 10.1016/j.compstruct.2010.01.017 Goller, 2003, Processing and characterization of bioglass reinforced hydroxyapatite composites, Ceram. Int., 29, 721, 10.1016/S0272-8842(02)00223-7 Neščáková, 2019, Multifunctional zinc ion doped sol – gel derived mesoporous bioactive glass nanoparticles for biomedical applications, Bioact. Mater., 4, 312, 10.1016/j.bioactmat.2019.10.002 Arepalli, 2019, Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses, J. Australas. Ceram. Soc., 55, 145, 10.1007/s41779-018-0220-5 Ershad, 2018, Effect of Sm2O3 substitution on mechanical and biological properties of 45S5 bioactive glass, J. Australas. Ceram. Soc., 54, 621, 10.1007/s41779-018-0190-7 Mozafari, 2010, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid, J. Non-Cryst. Solids, 356, 1470, 10.1016/j.jnoncrysol.2010.04.040 Boccaccini, 2007, Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass-ceramics, Faraday Discuss, 136, 27, 10.1039/b616539g Wu, 2009, Article commentary: evaluation of the in vitro bioactivity of bioceramics , bone tissue regen, Insights, 2 Goudarzi, 2019, Formation of hydroxyapatite on surface of SiO2– P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route, Ceram. Int., 45, 19323, 10.1016/j.ceramint.2019.06.183 Naveen Kumar Reddy, 2019, Effect of silver oxide on hydroxy carbonated apatite formation for simulated body fluid soaked calcium phospho silicate system, Mater. Today Proc., 10.1016/j.matpr.2019.10.097 Mansur, 2008, Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem. Eng. J., 137, 72, 10.1016/j.cej.2007.09.036 Hesaraki, 2010, Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass, J. Mater. Sci. Mater. Med., 21, 695, 10.1007/s10856-009-3920-0 Anand, 2016, B2O3–MgO–SiO2–Na2O–CaO–P2O5–ZnO bioactive system for bone regeneration applications, Ceram. Int., 42, 3638, 10.1016/j.ceramint.2015.11.029 Cerruti, 2005, An analytical model for the dissolution of different particle size samples of Bioglass® in TRIS-buffered solution, Biomaterials, 26, 4903, 10.1016/j.biomaterials.2005.01.013