Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica
Tài liệu tham khảo
Wang, 2007, Self-setting properties of a β-dicalcium silicate reinforced calcium phosphate cement, J. Biomed. Mater. Res. B Appl. Biomater., 82, 93, 10.1002/jbm.b.30709
Tripathi, 2019, Structural, physico-mechanical and in-vitro bioactivity studies on SiO2–CaO–P2O5–SrO–Al2O3 bioactive glasses, Mater. Sci. Eng. C, 94, 279, 10.1016/j.msec.2018.09.041
Fredholm, 2010, Strontium containing bioactive glasses: glass structure and physical properties, J. Non-Cryst. Solids, 2546, 10.1016/j.jnoncrysol.2010.06.078
Hench, 1971, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res., 5, 117, 10.1002/jbm.820050611
Sepulveda, 2001, Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res., 58, 734, 10.1002/jbm.10026
Hench, 1996, Biological applications of bioactive glasses, Life Chem. Rep., 13, 187
Hench, 2010, Twenty-first century challenges for biomaterials, J. R. Soc. Interface, 7, S379
Hoppe, 2011, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32, 2757, 10.1016/j.biomaterials.2011.01.004
Kargozar, 2018, Bioactive glasses entering the mainstream, Drug Discov. Today, 23, 1700, 10.1016/j.drudis.2018.05.027
Karakuzu-İkizler, 2019, Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass, J. Australas. Ceram. Soc.
Deliormanlı, 2015, Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med., 26, 1, 10.1007/s10856-014-5368-0
Rana, 2017, Development and characterization of gallium-doped bioactive glasses for potential bone cancer applications, ACS Biomater. Sci. Eng., 3, 3425, 10.1021/acsbiomaterials.7b00283
Ohtsuki, 1992, Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: its in vitro evaluation, J. Mater. Sci. Mater. Med., 3, 119, 10.1007/BF00705279
Ohura, 1992, Bioactivity of CaO·SiO2 glasses added with various ions, J. Mater. Sci. Mater. Med., 3, 95, 10.1007/BF00705275
Goel, 2011, Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses, Acta Biomater., 7, 4071, 10.1016/j.actbio.2011.06.047
Kaur, 2016, Magnesium and silver doped CaO–Na2 O–SiO2 –P2O5 bioceramic nanoparticles as implant materials, Ceram. Int., 42, 12651, 10.1016/j.ceramint.2016.05.001
Knabe, 2005, The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro, Clin. Oral Implant. Res., 16, 119, 10.1111/j.1600-0501.2004.01066.x
Saboori, 2009, Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass, Mater. Sci. Eng. C, 29, 335, 10.1016/j.msec.2008.07.004
Soulié, 2009, Influence of Mg doping on the early steps of physico-chemical reactivity of sol–gel derived bioactive glasses in biological medium, Phys. Chem. Chem. Phys., 11, 10473, 10.1039/b913771h
Chen, 2010, Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system, J. Biomed. Mater. Res. B Appl. Biomater., 93, 194
Moghanian, 2018, The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass, Ceram. Int., 44, 9422, 10.1016/j.ceramint.2018.02.159
Erol, 2010, Characterization, and in vitro bioactivity of sol-gel-derived Zn, Mg, and Zn-Mg Co-doped bioactive glasses, Chem. Eng. Technol., 33, 1066, 10.1002/ceat.200900495
Ma, 2010, Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses, Colloids Surfaces B Biointerfaces, 81, 87, 10.1016/j.colsurfb.2010.06.022
Moya, 1994, In vitro formation of hydroxylapatite layer in a MgO-containing glass, J. Mater. Sci. Mater. Med., 5, 529, 10.1007/BF00124885
Hench, 1991, Bioceramics: from concept to clinic, J. Am. Ceram. Soc., 74, 1487, 10.1111/j.1151-2916.1991.tb07132.x
Liu, 2006, Preparation of mica/apatite glass-ceramics biomaterials, Mater. Sci. Eng. C, 26, 1390, 10.1016/j.msec.2005.08.017
Stábile, 2015, Thermal evolution of Na2O-K2O-CaO-SiO2-P2O5-Al2O3 glass system, and possible applications as biomedical devices, Procedia Mater. Sci., 8, 332, 10.1016/j.mspro.2015.04.081
Tripathi, 2015, Structural characterization and in vitro bioactivity assessment of SiO2–CaO–P2O5–K2O–Al2O3 glass as bioactive ceramic material, Ceram. Int., 41, 11756, 10.1016/j.ceramint.2015.05.143
Wu, 2011, Bioactive SrO-SiO2glass with well-ordered mesopores: characterization, physiochemistry and biological properties, Acta Biomater., 7, 1797, 10.1016/j.actbio.2010.12.018
Bahniuk, 2012, Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma, Biointerphases, 7, 1, 10.1007/s13758-012-0041-y
Serra, 2002, Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses, J. Mater. Sci. Mater. Med., 1221, 10.1023/A:1021174912802
Mondal, 2013, Fabrication and characterization of ZrO2-CaO-P2O5-Na2O-SiO2 bioactive glass ceramics, J. Mater. Sci., 48, 1863, 10.1007/s10853-012-6956-3
Yucel, 2013, Preparation of melt derived 45S5 bioactive glass from rice hull ash and its characterization, Adv. Sci. Lett., 19, 3477, 10.1166/asl.2013.5228
Kalapathy, 2000, A simple method for production of pure silica from rice hull ash, Bioresour. Technol., 73, 257, 10.1016/S0960-8524(99)00127-3
Hench, 1993
Babu, 2019, Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: impact of Ti4+on physico-mechanical and in vitro bioactivity, Ceram. Int., 45, 23715, 10.1016/j.ceramint.2019.08.087
Cannillo, 2010, Production of Bioglass® 45S5 - polycaprolactone composite scaffolds via salt-leaching, Compos. Struct., 92, 1823, 10.1016/j.compstruct.2010.01.017
Goller, 2003, Processing and characterization of bioglass reinforced hydroxyapatite composites, Ceram. Int., 29, 721, 10.1016/S0272-8842(02)00223-7
Neščáková, 2019, Multifunctional zinc ion doped sol – gel derived mesoporous bioactive glass nanoparticles for biomedical applications, Bioact. Mater., 4, 312, 10.1016/j.bioactmat.2019.10.002
Arepalli, 2019, Preparation and in vitro investigation on bioactivity of magnesia-contained bioactive glasses, J. Australas. Ceram. Soc., 55, 145, 10.1007/s41779-018-0220-5
Ershad, 2018, Effect of Sm2O3 substitution on mechanical and biological properties of 45S5 bioactive glass, J. Australas. Ceram. Soc., 54, 621, 10.1007/s41779-018-0190-7
Mozafari, 2010, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid, J. Non-Cryst. Solids, 356, 1470, 10.1016/j.jnoncrysol.2010.04.040
Boccaccini, 2007, Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass-ceramics, Faraday Discuss, 136, 27, 10.1039/b616539g
Wu, 2009, Article commentary: evaluation of the in vitro bioactivity of bioceramics , bone tissue regen, Insights, 2
Goudarzi, 2019, Formation of hydroxyapatite on surface of SiO2– P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route, Ceram. Int., 45, 19323, 10.1016/j.ceramint.2019.06.183
Naveen Kumar Reddy, 2019, Effect of silver oxide on hydroxy carbonated apatite formation for simulated body fluid soaked calcium phospho silicate system, Mater. Today Proc., 10.1016/j.matpr.2019.10.097
Mansur, 2008, Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem. Eng. J., 137, 72, 10.1016/j.cej.2007.09.036
Hesaraki, 2010, Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass, J. Mater. Sci. Mater. Med., 21, 695, 10.1007/s10856-009-3920-0
Anand, 2016, B2O3–MgO–SiO2–Na2O–CaO–P2O5–ZnO bioactive system for bone regeneration applications, Ceram. Int., 42, 3638, 10.1016/j.ceramint.2015.11.029
Cerruti, 2005, An analytical model for the dissolution of different particle size samples of Bioglass® in TRIS-buffered solution, Biomaterials, 26, 4903, 10.1016/j.biomaterials.2005.01.013