Role of diffusion-weighted MRI in characterization of mediastinal masses

Springer Science and Business Media LLC - Tập 51 - Trang 1-12 - 2020
Tarek Ahmed Raafat1, Shimaa Mohamed Ahmed2, Emam Mohamed Abo Seif2, Hisham Samir Wahba Mikhael1, Ahmed Sayed Awad3
1Radiology Department, National Cancer Institute, Cairo University, Giza, Egypt
2Radiology Department, Faculty of Medicine (for girls), Al Azhar University, Cairo, Egypt
3Department of Diagnostic and Interventional Radiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Cairo, Egypt

Tóm tắt

Diffusion MR imaging (DWI) is a widely available non-invasive non-contrast functional MR imaging technique with short acquisition time. It helps in the analysis of tissue characteristics based on the diffusion of water protons within the tissue. Quantitative assessment of a mass is possible by calculating its apparent diffusion coefficient (ADC) value which is inversely correlated with tissue cellularity. So, DWI has diagnostic potential to distinguish benign from malignant tumors because of the tendency of the latter to show lower ADC values and more restricted diffusion. The aim of our work is to evaluate the use of DWI and ADC value measurement in differentiation between benign and malignant mediastinal tumors. This study included 44 cases of mediastinal masses: 27 males and 17 females. The mean ADC value of malignant mediastinal lesions was significantly lower than the mean ADC value of benign mediastinal lesions, with mean ADC 1.39 ± 0.26 in benign mediastinal lesions and mean ADC 0.86 ± 0.35 in malignant mediastinal lesions. This study also revealed that the cut-off threshold of ADC value for the differentiation between malignant and benign lesions was 1.11 × 10-3 mm2/s, with an area under ROC curve of 0.93. The sensitivity and specificity of our cutoff ADC values were 90.9% and 100%, with 100% positive predictive value and 76.9% negative predictive value. DWI with calculation of ADC value is functional MR imaging technique used in the analysis of tissue characteristics and quantitative assessment of a mediastinal mass. So, it can distinguish benign from malignant tumors because of the tendency of the malignant lesions to show more restricted diffusion and lower ADC values.

Tài liệu tham khảo

Carter, B. W., Betancourt, S. L., & Benveniste, M. F. (2017). MR imaging of mediastinal masses. Top Magn Reson Imaging, 26(4), 153–165. https://doi.org/https://doi.org/10.1097/RMR.0000000000000134. Sabri, Y.Y., Nossair, E.Z.B., Assal, H.H. et al. Role of diffusion weighted MR-imaging in the evaluation of malignant mediastinal lesions (2020). Egypt J Radiol Nucl Med 51, 32. https://doi.org/https://doi.org/10.1186/s43055-020-0132-6 Broncano, J., Alvarado-Benavides, A. M., Bhalla, S., Álvarez-Kindelan, A., Raptis, C. A., & Luna, A. (2019). Role of advanced magnetic resonance imaging in the assessment of malignancies of the mediastinum. World J Radiol, 11(3), 27–45. https://doi.org/https://doi.org/10.4329/wjr.v11.i3.27 Nasr A., Elshahat H., Safwat H., Alsaif R., Alshehab D., Shebl M (2016). Diffusion weighted MRI of mediastinal masses: can measurement of ADC value help in the differentiation between benign and malignant lesions. Egypt J Radiol Nucl Med 47, 119–125. https://doi.org/https://doi.org/10.1016/j.ejrnm.2015.12.002 Gümüştaş S, Inan N, Akansel G, Başyïğït I, Cïftçi E (2013) Differentiation of lymphoma versus sarcoidosis in the setting of mediastinal-hilar lymphadenopathy: assessment with diffusion-weighted MR imaging. Sarcoidosis Vasc Diffuse Lung Dis 30(1):52–59. 24003535 B. Türkbey, O. Aras, N. Karabulut, et al. (2012). Diffusion-weighted MRI for detecting and monitoring cancer: a review of current applications in body imaging. Diagn Interv Radiol, 18, pp. 46-59. https://doi.org/https://doi.org/10.4261/1305-3825.dir.4708-11.2 Nakayama J, Miyasaka K, Omatsu T, Onodera Y, Terae S, Matsuna Y, Cho Y (2010). Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative assessment with diffusion weighted magnetic resonance imaging and apparent diffusion coefficient. J Comput Assist Tomogr 34:1–8. https://doi.org/https://doi.org/10.1097/rct.0b013e3181a9cc07 El-Nahas M, Sadek A, Gwely N, Elrakhawy M, Al-Naghy E (2018). MR diffusion imaging and ADC measurement in solid and cystic mediastinal masses for differentiating benign from malignant lesions, Egypt J Radiol Nucl Med, 49, 976-985, https://doi.org/https://doi.org/10.1016/j.ejrnm.2018.06.004. Dawood HA, Salah-ElDin M (2014) Role of MRI apparent diffusion coefficient quantification in the differentiation between benign and malignant mediastinal and pulmonary lesions. Med J Cairo Univ 82(2):153–158 Abdel Razek A., Elmorsy A., Elshafey M., Elhadedy T., and Hamza O. (2009). Assessment of mediastinal tumors with diffusion weighted single-shot echo-planar MRI, journal of magnetic resonance imaging 30:535–540. https://doi.org/https://doi.org/10.1002/jmri.21871 Abdel Razek A. (2012). Diffusion MRI of chest tumors, Cancer Imaging, 12:452-463. https://dx.doi.org/https://doi.org/10.1102/1470-7330.2012.0041 Gümüştaş S, İnan N, Sarisoy HT, Anik Y, Arslan A, Çiftçi E, Akansel G, Demirci A (2011) Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging. Eur Radiol 21(11):2255–2260. https://doi.org/10.1007/s00330-011-2180-9 Tondo F., Saponaro A., Stecco A., Lombardi M., Casadio C., Carriero A. (2011). Role of diffusion-weighted imaging in the differential diagnosis of benign and malignant lesions of the chest–mediastinum, Radiol Med, 116:720–733. https://doi.org/https://doi.org/10.1007/s11547-011-0629-1 Sabri YY, Taymour T, Khairy M, Moawad M, Khafagy H (2017) Role of MRI diffusion in assessment of malignant mediastinal masses. Med J Cairo Univ 85(4):1497–1504 Sumi M., Ichikawa Y., Nakamura T. (2007). Diagnostic ability of apparent diffusion coefficients for lymphomas and carcinomas in the pharynx, EurRadiol, 17: 2631–2637. https://doi.org/10.1007/s00330-007-0588-z Nomori H, Mori T, Iked AK (2008) Diffusion weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thoracic Cardiovascular Surg 135:816–822. https://doi.org/10.1016/j.jtcvs.2007.10.035 Ustabasioglu, F. E., Samanci, C., Alis, D., Samanci, N. S., Kula, O., & Olgun, D. C. (2017). Apparent diffusion coefficient measurement in mediastinal lymphadenopathies: differentiation between benign and malignant lesions. J Clin Imaging Sci, 7, 12. https://doi.org/https://doi.org/10.4103/jcis.JCIS_84_16 Nakayama J, Miyasaka K, Omatsu T, Onodera Y, Terae S, Matsuna Y, Cho Y (2010) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative assessment with diffusion weighted magnetic resonance imaging and apparent diffusion coefficient. J Comput Assist Tomogr 34:1–8. https://doi.org/10.1097/RCT.0b013e3181a9cc07 Kosucu P. , Tekinbas C., Erol M., Sari A., Kavgaci H., Oztuna F., Ersoz S., (2009). Mediastinal lymph nodes: assessment with diffusion-weighted MR imaging, J Magn Reson Imaging, 30:292–297. https://doi.org/https://doi.org/10.1002/jmri.21850 Hasegawa I, Boiselle P, Kuwabara K et al (2008) Mediastinal lymph nodes in patients with non-small cell lung cancer: preliminary experience with diffusion weighted MR imaging. J Thoracic Imaging 23:157–161. https://doi.org/10.1097/RTI.0b013e318166d2f5 Matoba M, Tonami H, Kondou T, (2007). Lung carcinoma: diffusion-weighted MR imaging preliminary evaluation with apparent diffusion coefficient. Radiology; 243:570–577. https://doi.org/https://doi.org/10.1148/radiol.2432060131 Mori T, Nomori H, Ikeda K, (2008). Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J ThoracOncol; 3:358–364. https://doi.org/https://doi.org/10.1097/jto.0b013e318168d9ed Koyama H, Ohno Y, Aoyama N (2010) Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. EurRadiol 20:790–800. https://doi.org/10.1007/s00330-009-1615-z