Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vai trò của VEGFs trong các rối loạn chuyển hóa
Tóm tắt
Béo phì và các rối loạn chuyển hóa là những vấn đề sức khỏe công cộng quan trọng. Trong bài tổng quan này, vai trò của mạng lưới mạch máu và VEGF trong việc duy trì và bổ sung mô mỡ được thảo luận. Angiogenesis là một quá trình chủ chốt liên quan đến việc điều hòa sự cân bằng của các mô. sự rối loạn trong việc hình thành mạch máu mới có thể là yếu tố quyết định và góp phần vào sự khởi phát của một số tình trạng bệnh lý, bao gồm các rối loạn liên quan đến hội chứng chuyển hóa. Sự cân bằng của mô mỡ được điều chỉnh chặt chẽ bởi mạng lưới mạch máu. Các mạch máu hỗ trợ cấu trúc của mô mỡ. Mạng lưới mạch máu điều chỉnh sự cân bằng giữa các yếu tố điều hòa tích cực và tiêu cực. Trong mô mỡ trắng, yếu tố tăng trưởng nội mô mạch máu (VEGF) điều khiển các hoạt động chuyển hóa của tế bào chất béo, thúc đẩy sự chuyển đổi từ hình thái trắng sang hình thái be. Sự chuyển đổi này dẫn đến việc tăng cường tiêu thụ năng lượng. VEGF có tác động ngược lại đối với mô mỡ nâu, nơi mà VEGF tăng cung cấp oxy và cải thiện tiêu hao năng lượng, gây ra hiện tượng nhạt màu của các tế bào mỡ.
Từ khóa
#Béo phì #rối loạn chuyển hóa #mạng lưới mạch máu #VEGF #angiogenesis #hội chứng chuyển hóaTài liệu tham khảo
Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. https://doi.org/10.1038/35025220
Kazerounian S, Lawler J (2018) Integration of pro- and anti-angiogenic signals by endothelial cells. J Cell Commun Signal 12(1):171–179. https://doi.org/10.1007/s12079-017-0433-3
Iruela-Arispe ML, Dvorak HF (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 78(1):672–677
Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: MiRNA biology and rherapy. Curr Cancer Drug Targets 18(3):266–277. https://doi.org/10.2174/1568009617666170630142725
Turunen MP, Yla-Herttuala S (2011) Epigenetic regulation of key vascular genes and growth factors. Cardiovasc Res 90(3):441–446. https://doi.org/10.1093/cvr/cvr109
Bowler E, Oltean S (2019) Alternative splicing in angiogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms20092067
Soares R (2009) Oxidative stress, inflammation and angiogenesis in the metabolic syndrome. Springer Netherlands. https://doi.org/10.1007/978-1-4020-9701-0
Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Investig 121(6):2094–2101. https://doi.org/10.1172/JCI45887
Di Stefano AB, Massihnia D, Grisafi F, Castiglia M, Toia F, Montesano L, Russo A, Moschella F, Cordova A (2018) Adipose tissue, angiogenesis and angio-MIR under physiological and pathological conditions. Eur J Cell Biol. https://doi.org/10.1016/j.ejcb.2018.11.005
Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome–an allostatic perspective. Biochem Biophys Acta (1801) 3:338–349. https://doi.org/10.1016/j.bbalip.2009.12.006
Brakenhielm E, Cao R, Gao B, Angelin B, Cannon B, Parini P, Cao Y (2004) Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 94(12):1579–1588. https://doi.org/10.1161/01.RES.0000132745.76882.70
Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770. https://doi.org/10.1038/27376
Christiaens V, Lijnen HR (2006) Role of the fibrinolytic and matrix metalloproteinase systems in development of adipose tissue. Arch Physiol Biochem 112(4–5):254–259. https://doi.org/10.1080/13813450601093567
Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE, Salmina AB (2018) Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Front Physiol 9:1656. https://doi.org/10.3389/fphys.2018.01656
Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6(2):209. https://doi.org/10.1186/gb-2005-6-2-209
Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375(6532):577–581. https://doi.org/10.1038/375577a0
Veikkola T, Alitalo K (1999) VEGFs, receptors and angiogenesis. Semin Cancer Biol 9(3):211–220. https://doi.org/10.1006/scbi.1998.0091
Akagi Y, Liu W, Xie K, Zebrowski B, Shaheen RM, Ellis LM (1999) Regulation of vascular endothelial growth factor expression in human colon cancer by interleukin-1beta. Br J Cancer 80(10):1506–1511. https://doi.org/10.1038/sj.bjc.6690553
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A (2019) Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 234(2):1099–1110. https://doi.org/10.1002/jcp.27051
Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci: CMLS 63(5):601–615. https://doi.org/10.1007/s00018-005-5426-3
Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Investig 111(12):1843–1851. https://doi.org/10.1172/JCI17977
Geiseler SJ, Morland C (2018) The Janus face of VEGF in stroke. Int J Mol Sci. https://doi.org/10.3390/ijms19051362
Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. https://doi.org/10.1038/380439a0
Lu J, Zhao J, Ma J, Liu K, Yang H, Huang Y, Qin Z, Bai R, Li P, Yan W, Zhao M, Dong Z (2011) VEGF-A-induced immature DCs not mature DCs differentiation into endothelial-like cells through ERK1/2-dependent pathway. Cell Biochem Funct 29(4):294–302. https://doi.org/10.1002/cbf.1752
Sozzani S, Rusnati M, Riboldi E, Mitola S, Presta M (2007) Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28(9):385–392. https://doi.org/10.1016/j.it.2007.07.006
Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995
Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85(2):357–368
Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18(4):882–892. https://doi.org/10.1093/emboj/18.4.882
Ravelli C, Grillo E, Corsini M, Coltrini D, Presta M, Mitola S (2015) beta3 integrin promotes long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by immobilized ligand. Arterioscler Thromb Vasc Biol 35(10):2161–2171. https://doi.org/10.1161/ATVBAHA.115.306230
Mitola S, Brenchio B, Piccinini M, Tertoolen L, Zammataro L, Breier G, Rinaudo MT, den Hertog J, Arese M, Bussolino F (2006) Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circ Res 98(1):45–54. https://doi.org/10.1161/01.RES.0000199355.32422.7b
Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375(3):287–291. https://doi.org/10.1016/j.bbrc.2008.07.121
Mitola S, Ravelli C, Moroni E, Salvi V, Leali D, Ballmer-Hofer K, Zammataro L, Presta M (2010) Gremlin is a novel agonist of the major proangiogenic receptor VEGFR2. Blood 116(18):3677–3680. https://doi.org/10.1182/blood-2010-06-291930
Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19(10):2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013
Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9(4):225–230; discussion 231. https://doi.org/10.1007/s10456-006-9055-8
Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109(3):227–241. https://doi.org/10.1042/CS20040370
Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2 (59):re1. https://doi.org/10.1126/scisignal.259re1
Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen HR (2005) Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 146(10):4545–4554. https://doi.org/10.1210/en.2005-0532
Nguyen QD, De Falco S, Behar-Cohen F, Lam WC, Li X, Reichhart N, Ricci F, Pluim J, Li WW (2018) Placental growth factor and its potential role in diabetic retinopathy and other ocular neovascular diseases. Acta Ophthalmol 96(1):E1–E9. https://doi.org/10.1111/aos.13325
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Bock BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquiere B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532. https://doi.org/10.1007/s10456-018-9613-x
Mitola S, Soldi R, Zanon I, Barra L, Gutierrez MI, Berkhout B, Giacca M, Bussolino F (2000) Identification of specific molecular structures of human immunodeficiency virus type 1 Tat relevant for its biological effects on vascular endothelial cells. J Virol 74(1):344–353
Bosisio D, Ronca R, Salvi V, Presta M, Sozzani S (2018) Dendritic cells in inflammatory angiogenesis and lymphangiogenesis. Curr Opin Immunol 53:180–186. https://doi.org/10.1016/j.coi.2018.05.011
Deckers MM, Karperien M, van der Bent C, Yamashita T, Papapoulos SE, Lowik CW (2000) Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141(5):1667–1674. https://doi.org/10.1210/endo.141.5.7458
Yang X, Cepko CL (1996) Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. J Neurosci 16(19):6089–6099
Casella I, Feccia T, Chelucci C, Samoggia P, Castelli G, Guerriero R, Parolini I, Petrucci E, Pelosi E, Morsilli O, Gabbianelli M, Testa U, Peschle C (2003) Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor. Blood 101(4):1316–1323. https://doi.org/10.1182/blood-2002-07-2184
Shibuya M (2006) Vascular endothelial growth factor (VEGF)-receptor2: its biological functions, major signaling pathway, and specific ligand VEGF-E. Endothelium 13(2):63–69. https://doi.org/10.1080/10623320600697955
Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. https://doi.org/10.1038/nm0603-669
Pisacane AM, Risio M (2005) VEGF and VEGFR-2 immunohistochemistry in human melanocytic naevi and cutaneous melanomas. Melanoma Res 15(1):39–43
List AF (2001) Vascular endothelial growth factor signaling pathway as an emerging target in hematologic malignancies. Oncologist 6(Suppl 5):24–31
Youssoufian H, Hicklin DJ, Rowinsky EK (5548s) Review: monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin Cancer Res 13(18 Pt 2):5544s–5548s. https://doi.org/10.1158/1078-0432.CCR-07-1107
Witmer AN, Blaauwgeers HG, Weich HA, Alitalo K, Vrensen GF, Schlingemann RO (2002) Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey. Invest Ophthalmol Vis Sci 43(3):849–857
Siiteri PK (1987) Adipose tissue as a source of hormones. Am J Clin Nutr 45(1 Suppl):277–282. https://doi.org/10.1093/ajcn/45.1.277
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432. https://doi.org/10.1038/372425a0
Aldhahi W, Hamdy O (2003) Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 3(4):293–298
Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA 99(16):10730–10735. https://doi.org/10.1073/pnas.162349799
Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, Feldmann HM, Liang Z, Zhu Z, Nedergaard J, Cannon B, Cao Y (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9(1):99–109. https://doi.org/10.1016/j.cmet.2008.11.009
Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115. https://doi.org/10.1038/nrd3055
Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263. https://doi.org/10.1038/nm.3361
Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19(10):1338–1344. https://doi.org/10.1038/nm.3324
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787. https://doi.org/10.1038/nature06902
Girousse A, Gil-Ortega M, Bourlier V, Bergeaud C, Sastourne-Arrey Q, Moro C, Barreau C, Guissard C, Vion J, Arnaud E, Pradere JP, Juin N, Casteilla L, Sengenes C (2019) The release of adipose stromal cells from subcutaneous adipose tissue regulates ectopic intramuscular adipocyte deposition. Cell Rep 27 (2):323–333 e325. https://doi.org/10.1016/j.celrep.2019.03.038
Sengenes C, Miranville A, Maumus M, de Barros S, Busse R, Bouloumie A (2007) Chemotaxis and differentiation of human adipose tissue CD34+/CD31- progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells. Stem Cells 25(9):2269–2276. https://doi.org/10.1634/stemcells.2007-0180
Maumus M, Peyrafitte JA, D'Angelo R, Fournier-Wirth C, Bouloumie A, Casteilla L, Sengenes C, Bourin P (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35(9):1141–1153. https://doi.org/10.1038/ijo.2010.269
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. https://doi.org/10.1091/mbc.e02-02-0105
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. https://doi.org/10.1089/107632701300062859
Flynn L, Woodhouse KA (2008) Adipose tissue engineering with cells in engineered matrices. Organogenesis 4(4):228–235. https://doi.org/10.4161/org.4.4.7082
Tan SS, Ng ZY, Zhan W, Rozen W (2016) Role of adipose-derived stem cells in fat grafting and reconstructive surgery. J Cutan Aesthet Surg 9(3):152–156. https://doi.org/10.4103/0974-2077.191672
Bellows CF, Zhang Y, Simmons PJ, Khalsa AS, Kolonin MG (2011) Influence of BMI on level of circulating progenitor cells. Obesity 19(8):1722–1726. https://doi.org/10.1038/oby.2010.347
Gil-Ortega M, Garidou L, Barreau C, Maumus M, Breasson L, Tavernier G, Garcia-Prieto CF, Bouloumie A, Casteilla L, Sengenes C (2013) Native adipose stromal cells egress from adipose tissue in vivo: evidence during lymph node activation. Stem Cells 31(7):1309–1320. https://doi.org/10.1002/stem.1375
Volz AC, Omengo B, Gehrke S, Kluger PJ (2019) Comparing the use of differentiated adipose-derived stem cells and mature adipocytes to model adipose tissue in vitro. Differentiation 110:19–28. https://doi.org/10.1016/j.diff.2019.09.002
Gil-Ortega M, Fernandez-Alfonso MS, Somoza B, Casteilla L, Sengenes C (2014) Ex vivo microperfusion system of the adipose organ: a new approach to studying the mobilization of adipose cell populations. Int J Obes (Lond) 38(9):1255–1262. https://doi.org/10.1038/ijo.2013.243
Han Y, Ren J, Bai Y, Pei X (2019) Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol 109:59–68. https://doi.org/10.1016/j.biocel.2019.01.017
El-Ftesi S, Chang EI, Longaker MT, Gurtner GC (2009) Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg 123(2):475–485. https://doi.org/10.1097/PRS.0b013e3181954d08
Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, Hu MS, Rajadas J, Rodrigues M, Gurtner GC (2014) Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Therapy 5(3):79. https://doi.org/10.1186/scrt468
Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3):349–355. https://doi.org/10.1161/01.CIR.0000135466.16823.D0
Vishnubalaji R, Manikandan M, Al-Nbaheen M, Kadalmani B, Aldahmash A, Alajez NM (2012) In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC Dev Biol 12:7. https://doi.org/10.1186/1471-213X-12-7
Santos Rizzo Zuttion MS, Dias Camara DA, Dariolli R, Takimura C, Wenceslau C, Kerkis I (2019) In vitro heterogeneity of porcine adipose tissue-derived stem cells. Tissue Cell 58:51–60. https://doi.org/10.1016/j.tice.2019.04.001
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517. https://doi.org/10.1056/NEJMoa0810780
Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. Journal of obesity 2011:490650. https://doi.org/10.1155/2011/490650
Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Investig 117(9):2362–2368. https://doi.org/10.1172/JCI32239
Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82(3):925–934
Crandall DL, Busler DE, McHendry-Rinde B, Groeling TM, Kral JG (2000) Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab 85(7):2609–2614. https://doi.org/10.1210/jcem.85.7.6678
Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR (2010) Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring) 18(5):872–878. https://doi.org/10.1038/oby.2009.512
Ussar S, Lee KY, Dankel SN, Boucher J, Haering MF, Kleinridders A, Thomou T, Xue R, Macotela Y, Cypess AM, Tseng YH, Mellgren G, Kahn CR (2014) ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci Transl Med 6 (247):247ra103. https://doi.org/10.1126/scitranslmed.3008490
Matthias A, Ohlson KB, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B (2000) Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem 275 (33):25073–25081. https://doi.org/10.1074/jbc.M000547200
Bouillaud F, Ricquier D, Gulik-Krzywicki T, Gary-Bobo CM (1983) The possible proton translocating activity of the mitochondrial uncoupling protein of brown adipose tissue. Reconstitution studies in liposomes. FEBS Lett 164(2):272–276
Cypess AM, Kahn CR (2010) The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr 22(4):478–484. https://doi.org/10.1097/MOP.0b013e32833a8d6e
Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, Chacko AT, Deschamps LN, Herder LM, Truchan N, Glasgow AL, Holman AR, Gavrila A, Hasselgren PO, Mori MA, Molla M, Tseng YH (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19(5):635–639. https://doi.org/10.1038/nm.3112
During MJ, Liu X, Huang W, Magee D, Slater A, McMurphy T, Wang C, Cao L (2015) Adipose VEGF links the white-to-brown fat switch with environmental, genetic, and pharmacological stimuli in male mice. Endocrinology 156(6):2059–2073. https://doi.org/10.1210/en.2014-1905
Avram AS, Avram MM, James WD (2005) Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53 (4):671–683. https://doi.org/10.1016/j.jaad.2005.05.015
Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng YH (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 108(1):143–148. https://doi.org/10.1073/pnas.1010929108
Wang W, Seale P (2016) Control of brown and beige fat development. Nat Rev Mol Cell Biol 17(11):691–702. https://doi.org/10.1038/nrm.2016.96
Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151(2):400–413. https://doi.org/10.1016/j.cell.2012.09.010
Nicholls DG (2006) The physiological regulation of uncoupling proteins. Biochem Biophys Acta 1757(5–6):459–466. https://doi.org/10.1016/j.bbabio.2006.02.005
Shabalina IG, Jacobsson A, Cannon B, Nedergaard J (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem 279(37):38236–38248. https://doi.org/10.1074/jbc.M402375200
Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18(4):478–489. https://doi.org/10.1016/j.cmet.2013.08.008
Enerback S (2010) Human brown adipose tissue. Cell Metab 11(4):248–252. https://doi.org/10.1016/j.cmet.2010.03.008
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839
Rodrigues K, Pereira RM, de Campos TDP, de Moura RF, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Araujo MB, de Moura LP (2018) The role of physical exercise to improve the browning of white adipose tissue via POMC neurons. Front Cell Neurosci 12:88. https://doi.org/10.3389/fncel.2018.00088
Inagaki T, Sakai J, Kajimura S (2016) Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 17(8):480–495. https://doi.org/10.1038/nrm.2016.62
Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967. https://doi.org/10.1038/nature07182
Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154(9):2992–3000. https://doi.org/10.1210/en.2013-1403
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376. https://doi.org/10.1016/j.cell.2012.05.016
Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7(11):e49452. https://doi.org/10.1371/journal.pone.0049452
Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10(1):24–36. https://doi.org/10.1038/nrendo.2013.204
Bowers RR, Lane MD (2007) A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle 6(4):385–389. https://doi.org/10.4161/cc.6.4.3804
Ikeda K, Maretich P, Kajimura S (2018) The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab: TEM 29(3):191–200. https://doi.org/10.1016/j.tem.2018.01.001
Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. Am J Physiol Endocrinol Metab 302 (1):E19–31. https://doi.org/10.1152/ajpendo.00249.2011
Hondares E, Mora O, Yubero P, Rodriguez de la Concepcion M, Iglesias R, Giralt M, Villarroya F (2006) Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology 147(6):2829–2838. https://doi.org/10.1210/en.2006-0070
Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M (2011) Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286(50):43112–43122. https://doi.org/10.1074/jbc.M111.252775
Ishibashi J, Seale P (2015) Functions of Prdm16 in thermogenic fat cells. Temperature (Austin) 2(1):65–72. https://doi.org/10.4161/23328940.2014.974444
Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V, Chatterjee K, Garkavtsev I, Jain RK (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93(9):e88–97. https://doi.org/10.1161/01.RES.0000099243.20096.FA
Mahdaviani K, Chess D, Wu Y, Shirihai O, Aprahamian TR (2016) Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes. Metabolism 65 (1):26–35. https://doi.org/10.1016/j.metabol.2015.09.012
Almalki SG, Agrawal DK (2017) ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res Therapy 8(1):113. https://doi.org/10.1186/s13287-017-0568-4
Khan S, Villalobos MA, Choron RL, Chang S, Brown SA, Carpenter JP, Tulenko TN, Zhang P (2017) Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. J Vasc Surg 65(5):1483–1492. https://doi.org/10.1016/j.jvs.2016.04.034
Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. https://doi.org/10.1038/nature08945
Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468. https://doi.org/10.1038/nature10777
Hagberg C, Mehlem A, Falkevall A, Muhl L, Eriksson U (2013) Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology (Bethesda) 28(2):125–134. https://doi.org/10.1152/physiol.00042.2012
Cao R, Brakenhielm E, Wahlestedt C, Thyberg J, Cao Y (2001) Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci USA 98(11):6390–6395. https://doi.org/10.1073/pnas.101564798
Sun K, Wernstedt Asterholm I, Kusminski CM, Bueno AC, Wang ZV, Pollard JW, Brekken RA, Scherer PE (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 109(15):5874–5879. https://doi.org/10.1073/pnas.1200447109
Elias I, Franckhauser S, Bosch F (2013) New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2(2):109–112. https://doi.org/10.4161/adip.22880
Harwood HJ Jr (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63(1):57–75. https://doi.org/10.1016/j.neuropharm.2011.12.010
Wang B, Fu X, Liang X, Deavila JM, Wang Z, Zhao L, Tian Q, Zhao J, Gomez NA, Trombetta SC, Zhu MJ, Du M (2017) Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRalpha(+) adipose progenitors. Cell Discov 3:17036. https://doi.org/10.1038/celldisc.2017.36
Park J, Kim M, Sun K, An YA, Gu X, Scherer PE (2017) VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements. Diabetes 66(6):1479–1490. https://doi.org/10.2337/db16-1081
Liu Y, Berendsen AD, Jia S, Lotinun S, Baron R, Ferrara N, Olsen BR (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Investig 122(9):3101–3113. https://doi.org/10.1172/JCI61209
Jo DH, Park SW, Cho CS, Powner MB, Kim JH, Fruttiger M (2015) Intravitreally injected anti-VEGF antibody reduces brown fat in neonatal mice. PLoS ONE 10(7):e0134308. https://doi.org/10.1371/journal.pone.0134308
Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochem Biophys Acta 1813(7):1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019
Cao Y (2008) Molecular mechanisms and therapeutic development of angiogenesis inhibitors. Adv Cancer Res 100:113–131. https://doi.org/10.1016/S0065-230X(08)00004-3
