Role of MoOx Surficial Modification in Enhancing the OER Performance of Ru–Pyrochlore

Small - Tập 19 Số 10 - 2023
Haibo Liu1,2, Hengyu Guo1,2, Yanan Chen1,2, Zhengping Zhang1,2, Feng Wang1,2
1Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
2State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Tóm tắt

AbstractPyrochlore ruthenate (Y2Ru2O7–δ) is highlighted as a promising oxygen evolution reaction (OER) catalyst for water splitting in polymer electrolyte membrane electrolyzers. However, an efficient electronic modulation strategy for Y2Ru2O7–δ is required to overcome its electrochemical inertness. Herein, a surface manipulation strategy involving implanting MoOx moieties on nano Y2Ru2O7–δ (Mo–YRO) using wet chemical peroxone method is demonstrated. In contrast to electronic structure regulation by intramolecular charge transfer (i.e., substitutional strategies), the heterogeneous Mo−O−Ru micro‐interfaces facilitate efficient intermolecular electron transfer from [RuO6] to MoOx. This eliminates the bandgap by inducing Ru 4d delocalization and band alignment rearrangement. The MoOx modifiers also alleviate distortion of [RuO6] by shortening Ru−O bond and enlarging Ru−O−Ru bond angle. This electronic and geometric structure tailoring enhances the OER performance, showing a small overpotential of 240 mV at 10 mA cm−2. Moreover, the electron‐accepting MoOx moieties provide more electronegative surfaces, which serve as a protective “fence” to inhibit the dissolution of metal ions, thereby stabilizing the electrochemical activity. This study offers fresh insights into the design of new‐based pyrochlore electrocatalysts, and also highlights the versatility of surface engineering as a way of optimizing electronic structure and catalytic performance of other related materials.

Từ khóa


Tài liệu tham khảo

10.1021/ja00162a006

10.1016/j.joule.2020.06.001

10.1126/science.1215081

10.1126/science.1103197

10.1126/science.aam7092

10.1126/science.aaf5050

10.1038/s41929-021-00732-9

Chen Z., 2022, Adv. Energy Mater., 12

10.1021/acsenergylett.0c01625

10.1002/adfm.202005060

10.1002/adma.202006328

10.1002/anie.201406668

10.1002/ange.201406668

10.1038/srep38429

10.1021/jacs.7b06808

10.1039/C6EE03046G

10.1002/anie.201808825

10.1002/ange.201808825

10.1021/jacs.0c01135

10.1002/smtd.202101156

10.1002/adma.201970042

10.1126/science.1107559

10.1021/acscentsci.0c00479

10.1103/PhysRevLett.55.418

10.1088/0022-3719/16/32/014

10.1016/j.apcatb.2018.11.071

10.1016/j.apcatb.2019.118176

10.1021/acsnano.1c00266

10.1002/adma.201802091

Yao B., 2019, Small, 15, 9503

10.1021/jacs.5b07015

10.1021/nl301748m

10.1039/C6TA09994G

10.1038/s41467-020-16554-5

10.1021/acs.jpcc.8b04305

10.1007/s10973-015-5201-0

10.1088/2053-1591/aad9e9

10.1126/science.aaa8765

10.1039/D0EE01960G

10.1038/s41467-020-19212-y

10.1021/jacs.1c00384

10.1002/aenm.202102883

10.1021/acsnano.7b00704

10.1002/aenm.201700544

10.1002/anie.202004892

10.1002/ange.202004892

10.1002/adma.201606967

10.1002/anie.201204958

10.1002/ange.201204958

10.1039/C6TA03820D

10.1021/acs.nanolett.6b02203

10.1039/C6NR00604C

10.1038/s41467-019-09791-w