Role of Mast Cells in Shaping the Tumor Microenvironment

Daniel Elieh Ali Komi1, Frank A. Redegeld2
1Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368(1):7–13. https://doi.org/10.1016/j.canlet.2015.07.039

Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279. https://doi.org/10.1182/blood-2008-03-147033

De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. https://doi.org/10.1038/nrc.2017.51

Tamma R, Guidolin D, Annese T, Tortorella C, Ruggieri S, Rega S, Zito FA, Nico B, Ribatti D (2017) Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma. Exp Cell Res 359(1):179–184. https://doi.org/10.1016/j.yexcr.2017.07.033

Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822(1):2–8. https://doi.org/10.1016/j.bbadis.2010.11.010

Ribatti D, Crivellato E (2009) The controversial role of mast cells in tumor growth. Int Rev Cell Mol Biol 275:89–131. https://doi.org/10.1016/s1937-6448(09)75004-x

Elieh Ali Komi D, Bjermer L (2018) Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56:234–247. https://doi.org/10.1007/s12016-018-8720-1

Elieh-Ali-Komi D, Cao Y (2016) Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol 52:436–445. https://doi.org/10.1007/s12016-016-8595-y

Komi DEA, Rambasek T, Wohrl S (2018) Mastocytosis: from a molecular point of view. 54(3):397–411. https://doi.org/10.1007/s12016-017-8619-2

Hempel HA, Cuka NS, Kulac I, Barber JR, Cornish TC, Platz EA, De Marzo AM, Sfanos KS (2017) Low intratumoral mast cells are associated with a higher risk of prostate cancer recurrence. Prostate 77(4):412–424. https://doi.org/10.1002/pros.23280

Fu H, Zhu Y, Wang Y, Liu Z, Zhang J, Wang Z, Xie H, Dai B, Xu J, Ye D (2017) Tumor infiltrating mast cells (TIMs) confers a marked survival advantage in nonmetastatic clear-cell renal cell carcinoma. Ann Surg Oncol 24(5):1435–1442. https://doi.org/10.1245/s10434-016-5702-5

Ghouse SM, Polikarpova A, Muhandes L, Dudeck J, Tantcheva-Poor I, Hartmann K, Lesche M, Dahl A, Eming S, Muller W, Behrendt R, Roers A (2018) Although abundant in tumor tissue, mast cells have no effect on immunological micro-milieu or growth of HPV-induced or transplanted tumors. Cell Rep 22(1):27–35. https://doi.org/10.1016/j.celrep.2017.12.010

Shikotra A, Ohri CM, Green RH, Waller DA, Bradding P (2016) Mast cell phenotype, TNFalpha expression and degranulation status in non-small cell lung cancer. Sci Rep 6:38352. https://doi.org/10.1038/srep38352

Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C, Enblad G (2002) Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 119(1):122–124

Malfettone A, Silvestris N, Saponaro C, Ranieri G, Russo A, Caruso S, Popescu O, Simone G, Paradiso A, Mangia A (2013) High density of tryptase-positive mast cells in human colorectal cancer: a poor prognostic factor related to protease-activated receptor 2 expression. J Cell Mol Med 17(8):1025–1037. https://doi.org/10.1111/jcmm.12073

Dantas RCM, de Souza RO, Valverde LF, Vidal MTA, Sales CBS, Sousa LP, Dos Santos JN, Ramos EAG, Gurgel Rocha CA (2017) Evaluation of mast cell density in the tumor microenvironment in oral epithelial dysplasia and oral squamous cell carcinoma. Appl Immunohistochem Mol Morphol 25(10):e83–e88. https://doi.org/10.1097/pai.0000000000000587

Mangia A, Malfettone A, Rossi R, Paradiso A, Ranieri G, Simone G, Resta L (2011) Tissue remodelling in breast cancer: human mast cell tryptase as an initiator of myofibroblast differentiation. Histopathology 58(7):1096–1106. https://doi.org/10.1111/j.1365-2559.2011.03842.x

Ranieri G, Ammendola M, Patruno R, Celano G, Zito FA, Montemurro S, Rella A, Di Lecce V, Gadaleta CD, Battista De Sarro G, Ribatti D (2009) Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int J Oncol 35(1):115–120

Foroozan M, Roudi R, Abolhasani M, Gheytanchi E, Mehrazma M (2017) Clinical significance of endothelial cell marker CD34 and mast cell marker CD117 in prostate adenocarcinoma. Pathol Res Pract 213(6):612–618. https://doi.org/10.1016/j.prp.2017.04.027

Eder J, Rogojanu R, Jerney W, Erhart F, Dohnal A, Kitzwogerer M, Steiner G, Moser J, Trautinger F (2016) Mast cells are abundant in primary cutaneous T-cell lymphomas: results from a computer-aided quantitative immunohistological study. PLoS One 11(11):e0163661. https://doi.org/10.1371/journal.pone.0163661

Mukherjee S, Bandyopadhyay G, Dutta C, Bhattacharya A, Karmakar R, Barui G (2009) Evaluation of endoscopic biopsy in gastric lesions with a special reference to the significance of mast cell density. Indian J Pathol Microbiol 52(1):20–24

Ammendola M, Sacco R, Zuccala V, Luposella M, Patruno R, Gadaleta P, Zizzo N, Gadaleta CD, De Sarro G, Sammarco G, Oltean M, Ranieri G (2016) Mast cells density positive to tryptase correlate with microvascular density in both primary gastric cancer tissue and loco-regional lymph node metastases from patients that have undergone radical surgery. Int J Mol Sci 17(11):pii: E1905. https://doi.org/10.3390/ijms17111905

Guidolin D, Marinaccio C, Tortorella C, Annese T, Ruggieri S, Finato N, Crivellato E, Ribatti D (2017) Non-random spatial relationships between mast cells and microvessels in human endometrial carcinoma. Clin Exp Med 17(1):71–77. https://doi.org/10.1007/s10238-016-0407-4

Chen Y, Li C, Xie H, Fan Y, Yang Z, Ma J, He D, Li L (2017) Infiltrating mast cells promote renal cell carcinoma angiogenesis by modulating PI3K-->AKT-->GSK3beta-->AM signaling. Oncogene 36(20):2879–2888. https://doi.org/10.1038/onc.2016.442

Tuna B, Yorukoglu K, Unlu M, Mungan MU, Kirkali Z (2006) Association of mast cells with microvessel density in renal cell carcinomas. Eur Urol 50(3):530–534. https://doi.org/10.1016/j.eururo.2005.12.040

Guo X, Zhai L, Xue R, Shi J, Zeng Q, Gao C (2016) Mast cell tryptase contributes to pancreatic cancer growth through promoting angiogenesis via activation of angiopoietin-1. Int J Mol Sci 17(6):834. https://doi.org/10.3390/ijms17060834

Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N, Rossi FW, Basolo F, Ugolini C, de Paulis A, Santoro M, Marone G (2010) Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29(47):6203–6215. https://doi.org/10.1038/onc.2010.348

Cherdantseva TM, Bobrov IP, Avdalyan AM, Klimachev VV, Kazartsev AV, Kryuchkova NG, Klimachev IV, Myadelets MN, Lepilov AV, Lushnikova EL, Molodykh OP (2017) Mast cells in renal cancer: clinical morphological correlations and prognosis. Bull Exp Biol Med 163(6):801–804. https://doi.org/10.1007/s10517-017-3907-7

Yu Y, Blokhuis B, Derks Y (2018) Human mast cells promote colon cancer growth via bidirectional crosstalk: studies in 2D and 3D coculture models. 7(11):e1504729. https://doi.org/10.1080/2162402x.2018.1504729

Mizuno H, Nakayama T, Miyata Y, Saito S, Nishiwaki S, Nakao N, Takeshita K, Naoe T (2012) Mast cells promote the growth of Hodgkin’s lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia 26(10):2269–2276. https://doi.org/10.1038/leu.2012.81

Visciano C, Liotti F, Prevete N, Cali G, Franco R, Collina F, de Paulis A, Marone G, Santoro M, Melillo RM (2015) Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene 34(40):5175–5186. https://doi.org/10.1038/onc.2014.441

Gorzalczany Y, Akiva E, Klein O, Merimsky O, Sagi-Eisenberg R (2017) Mast cells are directly activated by contact with cancer cells by a mechanism involving autocrine formation of adenosine and autocrine/paracrine signaling of the adenosine A3 receptor. Cancer Lett 397:23–32. https://doi.org/10.1016/j.canlet.2017.03.026

Jiang Y, Wu Y, Hardie WJ, Zhou X (2017) Mast cell chymase affects the proliferation and metastasis of lung carcinoma cells in vitro. Oncol Lett 14(3):3193–3198. https://doi.org/10.3892/ol.2017.6487

Attarha S, Roy A, Westermark B, Tchougounova E (2017) Mast cells modulate proliferation, migration and stemness of glioma cells through downregulation of GSK3beta expression and inhibition of STAT3 activation. Cell Signal 37:81–92. https://doi.org/10.1016/j.cellsig.2017.06.004

Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G, Sacco R, Sammarco G, De Sarro G, Russo E, Ranieri G (2014) Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. Biomed Res Int 2014:154702. https://doi.org/10.1155/2014/154702

Ribatti D, Ranieri G (2015) Tryptase, a novel angiogenic factor stored in mast cell granules. Exp Cell Res 332(2):157–162. https://doi.org/10.1016/j.yexcr.2014.11.014

Hu G, Wang S, Cheng P (2018) Tumor-infiltrating tryptase(+) mast cells predict unfavorable clinical outcome in solid tumors. Int J Cancer 142(4):813–821. https://doi.org/10.1002/ijc.31099

Ribatti D, Crivellato E, Roccaro AM, Ria R, Vacca A (2004) Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34(11):1660–1664. https://doi.org/10.1111/j.1365-2222.2004.02104.x

Ieni A, Barresi V (2016) Mast cell interaction with neutrophils in human gastric carcinomas: ultrastructural observations. Anal Cell Pathol (Amst) 2016:6891971

Jachetti E, Rigoni A, Bongiovanni L, Arioli I, Botti L, Parenza M, Cancila V, Chiodoni C, Festinese F, Bellone M, Tardanico R, Tripodo C, Colombo MP (2017) Imatinib spares cKit-expressing prostate neuroendocrine tumors, whereas kills seminal vesicle epithelial-stromal tumors by targeting PDGFR-beta. Mol Cancer Ther 16(2):365–375. https://doi.org/10.1158/1535-7163.mct-16-0466

Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71(18):5987–5997. https://doi.org/10.1158/0008-5472.can-11-1637

Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE (2016) Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front Oncol 6:218. https://doi.org/10.3389/fonc.2016.00218

Schaaf MB, Garg AD, Agostinis P (2018) Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 9(2):115. https://doi.org/10.1038/s41419-017-0061-0

Jensen-Jarolim E, Bax HJ, Bianchini R, Capron M, Corrigan C, Castells M, Dombrowicz D, Daniels-Wells TR, Fazekas J, Fiebiger E, Gatault S, Gould HJ, Janda J, Josephs DH, Karagiannis P, Levi-Schaffer F, Meshcheryakova A, Mechtcheriakova D, Mekori Y, Mungenast F, Nigro EA, Penichet ML, Redegeld F, Saul L, Singer J, Spicer JF, Siccardi AG, Spillner E, Turner MC, Untersmayr E, Vangelista L, Karagiannis SN (2017) AllergoOncology - the impact of allergy in oncology: EAACI position paper. Allergy 72(6):866–887. https://doi.org/10.1111/all.13119

Taylor JG, Gribben JG (2015) Microenvironment abnormalities and lymphomagenesis: immunological aspects. Semin Cancer Biol 34:36–45. https://doi.org/10.1016/j.semcancer.2015.07.004

Yang L, Zhang Y (2017) Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol 10(1):58. https://doi.org/10.1186/s13045-017-0430-2

Jarosz-Biej M, Kaminska N, Matuszczak S, Cichon T, Pamula-Pilat J, Czapla J, Smolarczyk R, Skwarzynska D, Kulik K, Szala S (2018) M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 13(1):e0191012. https://doi.org/10.1371/journal.pone.0191012

Ansell SM, Vonderheide RH (2013) Cellular composition of the tumor microenvironment. Am Soc Clin Oncol Educ Book American Society of Clinical Oncology Annual Meeting 33:e91–e97. https://doi.org/10.1200/EdBook_AM.2013.33.e91

Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One 5(1):e8922. https://doi.org/10.1371/journal.pone.0008922

Paolino G, Belmonte M, Trasarti S, Santopietro M, Bizzoni L, Riminucci M, Cardarelli L, Iannella E, Albanesi M, Moliterni E, Didona D, Calvieri S, Foa R, Giona F (2017) Mast cell disorders, melanoma and pancreatic carcinoma: from a clinical observation to a brief review of the literature. Acta Dermatovenerol Croat 25(2):112–119

Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G (2017) Bidirectional mast cell-eosinophil interactions in inflammatory disorders and cancer. Front Med 4:103. https://doi.org/10.3389/fmed.2017.00103

Godot V, Arock M, Garcia G, Capel F, Flys C, Dy M, Emilie D, Humbert M (2007) H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J Allergy Clin Immunol 120(4):827–834. https://doi.org/10.1016/j.jaci.2007.05.046

Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F (2017) Are mast cells MASTers in cancer? Front Immunol 8:424. https://doi.org/10.3389/fimmu.2017.00424

Roy A, Coum A, Marinescu VD, Polajeva J, Smits A, Nelander S, Uhrbom L, Westermark B, Forsberg-Nilsson K, Ponten F, Tchougounova E (2015) Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells. Oncotarget 6(27):23647–23661. https://doi.org/10.18632/oncotarget.4640

Polajeva J, Bergstrom T, Edqvist PH, Lundequist A, Sjosten A, Nilsson G, Smits A, Bergqvist M, Ponten F, Westermark B, Pejler G, Forsberg Nilsson K, Tchougounova E (2014) Glioma-derived macrophage migration inhibitory factor (MIF) promotes mast cell recruitment in a STAT5-dependent manner. Mol Oncol 8(1):50–58. https://doi.org/10.1016/j.molonc.2013.09.002

Polajeva J, Sjosten AM, Lager N, Kastemar M, Waern I, Alafuzoff I, Smits A, Westermark B, Pejler G, Uhrbom L, Tchougounova E (2011) Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PLoS One 6(9):e25222. https://doi.org/10.1371/journal.pone.0025222

Kabiraj A, Jaiswal R, Singh A, Gupta J, Singh A, Samadi FM (2018) Immunohistochemical evaluation of tumor angiogenesis and the role of mast cells in oral squamous cell carcinoma. J Cancer Res Ther 14(3):495–502. https://doi.org/10.4103/0973-1482.163693

Visciano C, Prevete N, Liotti F, Marone G (2015) Tumor-associated mast cells in thyroid cancer. Int J Endocrinol 2015:705169. https://doi.org/10.1155/2015/705169

Detoraki A, Staiano RI, Granata F, Giannattasio G, Prevete N, de Paulis A, Ribatti D, Genovese A, Triggiani M, Marone G (2009) Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol 123(5):1142–1149, e1141-1145. https://doi.org/10.1016/j.jaci.2009.01.044

Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, Gruber BL (1997) Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest 99(11):2691–2700. https://doi.org/10.1172/jci119458

He L, Zhu Z, Chen S, Wang Y, Gu H (2016) Mammary tumor growth and metastasis are reduced in c-Kit mutant Sash mice. Cancer Med 5(6):1292–1297. https://doi.org/10.1002/cam4.696

Bodduluri SR, Mathis S, Maturu P, Krishnan E, Satpathy SR, Chilton PM, Mitchell TC, Lira S, Locati M, Mantovani A, Jala VR, Haribabu B (2018) Mast cell-dependent CD8(+) T-cell recruitment mediates immune surveillance of intestinal tumors in Apc(min/+) mice. Cancer Immunol Res 6:332–347. https://doi.org/10.1158/2326-6066.cir-17-0424

Cimpean AM, Tamma R, Ruggieri S, Nico B, Toma A, Ribatti D (2017) Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol 115:23–26. https://doi.org/10.1016/j.critrevonc.2017.04.009

Nakajima M, Nagahashi M, Rashid OM, Takabe K, Wakai T (2017) The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumour Biol 39(4):1010428317699133. https://doi.org/10.1177/1010428317699133

Rigoni A, Colombo MP, Pucillo C (2015) The role of mast cells in molding the tumor microenvironment. Cancer Microenviron 8(3):167–176. https://doi.org/10.1007/s12307-014-0152-8

Ammendola M, Gadaleta CD, Frampton AE, Piardi T, Memeo R, Zuccala V, Luposella M, Patruno R, Zizzo N, Gadaleta P, Pessaux P, Sacco R, Sammarco G, Ranieri G (2017) The density of mast cells c-Kit(+) and tryptase(+) correlates with each other and with angiogenesis in pancreatic cancer patients. Oncotarget 8(41):70463–70471. https://doi.org/10.18632/oncotarget.19716

Faustino-Rocha AI, Gama A, Oliveira PA, Vanderperren K, Saunders JH, Pires MJ, Ferreira R, Ginja M (2017) Modulation of mammary tumor vascularization by mast cells: ultrasonographic and histopathological approaches. Life Sci 176:35–41. https://doi.org/10.1016/j.lfs.2017.03.013

Faustino-Rocha AI, Gama A, Neuparth MJ, Oliveira PA, Ferreira R, Ginja M (2017) Mast cells in mammary carcinogenesis: host or tumor supporters? Anticancer Res 37(3):1013–1021. https://doi.org/10.21873/anticanres.11411

Ammendola M, Sacco R, Sammarco G, Luposella M, Patruno R, Gadaleta CD, Sarro GD, Ranieri G (2016) Mast cell-targeted strategies in cancer therapy. Transfusion medicine and hemotherapy : offizielles. Transfus Med Hemother 43(2):109–113. https://doi.org/10.1159/000444942

Cimpean AM, Raica M (2016) The hidden side of disodium cromolyn: from mast cell stabilizer to an angiogenic factor and antitumor agent. Arch Immunol Ther Exp 64(6):515–522. https://doi.org/10.1007/s00005-016-0408-8

Marech I, Ammendola M, Gadaleta C, Zizzo N, Oakley C, Gadaleta CD, Ranieri G (2014) Possible biological and translational significance of mast cells density in colorectal cancer. World J Gastroenterol 20(27):8910–8920. https://doi.org/10.3748/wjg.v20.i27.8910

Ribatti D (2016) Mast cells as therapeutic target in cancer. Eur J Pharmacol 778:152–157. https://doi.org/10.1016/j.ejphar.2015.02.056

Nam SY, Han NR, Yoon KW, Kim HM, Jeong HJ (2017) Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an anticancer agent, exerts an anti-inflammatory effect in activated human mast cells. Inflamm Res 66(10):871–879. https://doi.org/10.1007/s00011-017-1067-x

Wroblewski M, Bauer R, Cubas Cordova M, Udonta F, Ben-Batalla I, Legler K, Hauser C, Egberts J, Janning M, Velthaus J, Schulze C, Pantel K, Bokemeyer C, Loges S (2017) Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B. Nat Commun 8(1):269. https://doi.org/10.1038/s41467-017-00327-8

Oldford SA, Haidl ID, Howatt MA, Leiva CA, Johnston B, Marshall JS (2010) A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J Immunol (Baltimore, Md : 1950) 185(11):7067–7076. https://doi.org/10.4049/jimmunol.1001137

Eller K, Rosenkranz AR (2012) Mast cells: subordinates or masterminds in autoimmunity. J Am Soc Nephrol 23(12):1913–1914. https://doi.org/10.1681/asn.2012101025

Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126. https://doi.org/10.1155/2015/246126

Elieh-Ali-Komi D, Cao Y (2017) Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol 52(3):436–445. https://doi.org/10.1007/s12016-016-8595-y

Theoharides TC, Kempuraj D, Kourelis T, Manola A (2008) Human mast cells stimulate activated T cells: implications for multiple sclerosis. Ann N Y Acad Sci 1144:74–82. https://doi.org/10.1196/annals.1418.029

Dietsch GN, Hinrichs DJ (1991) Mast cell proteases liberate stable encephalitogenic fragments from intact myelin. Cell Immunol 135(2):541–548

Svensson J, Eising S, Mortensen HB, Christiansen M, Laursen I, Lernmark A, Nilsson A, Simonsen LB, Carstensen B, Pociot F, Johannesen J (2012) High levels of immunoglobulin E and a continuous increase in immunoglobulin G and immunoglobulin M by age in children with newly diagnosed type 1 diabetes. Hum Immunol 73(1):17–25. https://doi.org/10.1016/j.humimm.2011.10.019

Geoffrey R, Jia S, Kwitek AE, Woodliff J, Ghosh S, Lernmark A, Wang X, Hessner MJ (2006) Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the BioBreeding rat. J Immunol (Baltimore, Md : 1950) 177(10):7275–7286

Groot Kormelink T, Powe DG, Kuijpers SA, Abudukelimu A, Fens MH, Pieters EH, Kassing van der Ven WW, Habashy HO, Ellis IO, Blokhuis BR, Thio M, Hennink WE, Storm G, Redegeld FA, Schiffelers RM (2014) Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation. Oncotarget 5(10):3159–3167. https://doi.org/10.18632/oncotarget.1868

Guidolin D, Ruggieri S, Annese T, Tortorella C, Marzullo A, Ribatti D (2017) Spatial distribution of mast cells around vessels and glands in human gastric carcinoma. Clin Exp Med 17(4):531–539. https://doi.org/10.1007/s10238-017-0452-7

Globa T, Saptefrti L, Ceausu RA, Gaje P, Cimpean AM, Raica M (2014) Mast cell phenotype in benign and malignant tumors of the prostate. Pol J Pathol 65(2):147–153

Molderings GJ, Zienkiewicz T, Homann J, Menzen M, Afrin LB (2017) Risk of solid cancer in patients with mast cell activation syndrome: results from Germany and USA. F1000Research 6:1889. https://doi.org/10.12688/f1000research.12730.1

Yu Y, Blokhuis BRJ, Diks MAP, Keshavarzian A, Garssen J, Redegeld FA (2018) Functional inhibitory Siglec-6 is upregulated in human colorectal Cancer-associated mast cells. Front Immunol 9:2138. https://doi.org/10.3389/fimmu.2018.02138