Role of L-lactate as an energy substrate in primary rat podocytes under physiological and glucose deprivation conditions
Tài liệu tham khảo
Abe, 2010, Bioenergetic characterization of mouse podocytes, Am. J. Physiol. Cell Physiol., 299, 10.1152/ajpcell.00563.2009
Audzeyenka, 2020, Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia, Biochim. Biophys. Acta - Mol. Cell Res., 1867, 10.1016/j.bbamcr.2020.118723
Audzeyenka, 2021, Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes, Exp. Cell Res., 407, 10.1016/j.yexcr.2021.112758
Becker, 2010, Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis, Am. J. Physiol. Ren. Physiol., 299, 10.1152/ajprenal.00488.2009
Berthet, 2009, Neuroprotective role of lactate after cerebral ischemia, J. Cereb. Blood Flow Metab.: Off. J. Int. Soc. Cereb. Blood Flow Metab., 29, 1780, 10.1038/jcbfm.2009.97
Bouzier-Sore, 2003, Lactate is a preferential oxidative energy substrate over glucose for neurons in culture, J. Cereb. Blood Flow Metab., 23, 1298, 10.1097/01.WCB.0000091761.61714.25
Brinkkoetter, 2019, Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics, Cell Rep., 27, 1551, 10.1016/j.celrep.2019.04.012
Brooks, 2007, Lactate: link between glycolytic and oxidative metabolism, Sports Med., 37, 341, 10.2165/00007256-200737040-00017
Brooks, 2009, Cell-cell and intracellular lactate shuttles, J. Physiol., 587, 5591, 10.1113/jphysiol.2009.178350
Brooks, 2018, The science and translation of lactate shuttle theory, Cell Metab., 27, 757, 10.1016/j.cmet.2018.03.008
Brooks, 2020, Lactate as a fulcrum of metabolism, Redox Biol., 35, 10.1016/j.redox.2020.101454
Brooks, 1999, Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle, Proc. Natl. Acad. Sci. USA, 96, 1129, 10.1073/pnas.96.3.1129
Brooks, 2022, Lactate in contemporary biology: a phoenix risen, J. Physiol., 600, 1229, 10.1113/JP280955
Cersosimo, 2000, Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans, Diabetes, 49, 1186, 10.2337/diabetes.49.7.1186
Certo, 2022, Understanding lactate sensing and signalling, Trends Endocrinol. Metab.: TEM, 33, 722, 10.1016/j.tem.2022.07.004
Coward, 2005, The human glomerular podocyte is a novel target for insulin action, Diabetes, 54, 3095, 10.2337/diabetes.54.11.3095
Cruz, 2012, Intracellular shuttle: the lactate aerobic metabolism, Sci. World J., 2012, 10.1100/2012/420984
Dong, 2021, Lactate and myocardiac energy metabolism, Front. Physiol., 12
Fernandes, 1982, Lactate as energy source for brain in glucose-6-phosphatase deficient child, Lancet, 1, 113, 10.1016/S0140-6736(82)90257-4
Ge, 2021, APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis, Hum. Mol. Genet., 30, 182, 10.1093/hmg/ddab022
Gladden, 2004, Lactate metabolism: a new paradigm for the third millennium, J. Physiol., 558, 5, 10.1113/jphysiol.2003.058701
Gladden, 2008, A lactatic perspective on metabolism, Med. Sci. Sports Exerc., 40, 477, 10.1249/MSS.0b013e31815fa580
Halestrap, 1999, The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation, Biochem. J., 343, 281, 10.1042/bj3430281
Hashimoto, 2006, Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex, Am. J. Physiol. Endocrinol. Metab., 290, 10.1152/ajpendo.00594.2005
Hui, 2017, Glucose feeds the TCA cycle via circulating lactate, Nature, 551, 115, 10.1038/nature24057
Illingworth, J., 1985. Methods of enzymatic analysis: third edition: editor-in-chief: Hans Ulrich Bergmeyer. Verlag Chemie, 1983 (vols I–III), 1984 (vols IV & V) DM258 each volume or DM2240 vols I–X inclusive. Biochem. Educ., vol. 13(no. 1), 38–38. 〈https://doi.org/10.1016/0307-4412(85)90136-0〉.
Imasawa, 2017, High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy, FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol., 31, 294, 10.1096/fj.201600293r
Jiang, 2022, Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect, IUBMB Life, 74, 10.1002/iub.2668
Karagiannis, 2021, Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity, ELife, 10, 10.7554/eLife.71424
Kraut, 2012, Treatment of acute metabolic acidosis: a pathophysiologic approach, Nat. Rev. Nephrol., 8, 589, 10.1038/nrneph.2012.186
Lau, 2021, Cardiac metabolic imaging using hyperpolarized [1–13C]lactate as a substrate, NMR Biomed., 34, 10.1002/nbm.4532
Lee, 2021, Lactate: a multifunctional signaling molecule, Yeungnam Univ. J. Med., 38, 183, 10.12701/yujm.2020.00892
Leen, 2013, Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review, JAMA Neurol., 70, 1440, 10.1001/jamaneurol.2013.3090
Lewko, 2005, Characterization of glucose uptake by cultured rat podocytes, Kidney Blood Press. Res., 28, 1, 10.1159/000080889
Li, 2020, Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS, EMBO Rep., 21, 10.15252/embr.201948781
Magistretti, 1999, Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 354, 1155, 10.1098/rstb.1999.0471
Marcinek, 2010, Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle, J. Appl. Physiol. (Bethesda, Md.: 1985), 108, 1479, 10.1152/japplphysiol.01189.2009
Marcus, 1994, Altered renal expression of the insulin-responsive glucose transporter GLUT4 in experimental diabetes mellitus, Am. J. Physiol., 267
McCullagh, 1996, Role of the lactate transporter (MCT1) in skeletal muscles, Am. J. Physiol., 271
Medina, 2002, Lactate-induced translocation of GLUT1 and GLUT4 is not mediated by the phosphatidyl-inositol-3-kinase pathway in the rat heart, Basic Res. Cardiol., 97, 168, 10.1007/s003950200008
Meyer, 2002, Renal substrate exchange and gluconeogenesis in normal postabsorptive humans, Am. J. Physiol. Endocrinol. Metab., 282, 10.1152/ajpendo.00116.2001
Nakajo, 2007, Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance, J. Am. Soc. Nephrol.: JASN, 18, 2554, 10.1681/ASN.2006070732
Ozawa, 2015, Glycolysis, but not mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes, Sci. Rep., 5, 10.1038/srep18575
Pellerin, 1994, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. USA, 91, 10625, 10.1073/pnas.91.22.10625
Qi, 2017, Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction, Nat. Med., 23, 753, 10.1038/nm.4328
Qin, 2020, Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis, Br. J. Pharm., 177, 3646, 10.1111/bph.14935
Rabbani, 2019, Hexokinase-2 glycolytic overload in diabetes and ischemia-reperfusion injury, Trends Endocrinol. Metab.: TEM, 30, 419, 10.1016/j.tem.2019.04.011
Rabinowitz, 2020, Lactate: the ugly duckling of energy metabolism, Nat. Metab., 2, 566, 10.1038/s42255-020-0243-4
Rogacka, 2016, SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes, Exp. Cell Res., 349, 328, 10.1016/j.yexcr.2016.11.005
Rogacka, 2021, Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1-AMPK crosstalk in podocytes: impact on glucose uptake, Arch. Biochem. Biophys., 709, 10.1016/j.abb.2021.108985
Schurr, 2002, Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia, Neurochem. Int., 41, 1, 10.1016/S0197-0186(01)00142-5
Schurr, 2002, Lactate, glucose and energy metabolism in the ischemic brain (review), Int. J. Mol. Med., 10, 131
Schurr, 2006, Lactate: the ultimate cerebral oxidative energy substrate, J. Cereb. Blood Flow Metab.: Off. J. Int. Soc. Cereb. Blood Flow Metab., 26, 142, 10.1038/sj.jcbfm.9600174
Schurr, 2007, Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study, Neuroscience, 147, 613, 10.1016/j.neuroscience.2007.05.002
Schurr, 1997, Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation, J. Neurochem., 69, 423, 10.1046/j.1471-4159.1997.69010423.x
Schurr, 1997, Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study, Brain Res., 744, 105, 10.1016/S0006-8993(96)01106-7
Srivastava, 2019, Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium-coupled monocarboxylate transporter SMCT1 (SLC5A8) and SMCT2 (SLC5A12), J. Physiol. Sci.: JPS, 69, 399, 10.1007/s12576-018-00658-1
Srivastava, 2018, Mechanotransduction signaling in podocytes from fluid flow shear stress, Am. J. Physiol. Ren. Physiol., 314, F22, 10.1152/ajprenal.00325.2017
Szrejder, 2020, Extracellular ATP modulates podocyte function through P2Y purinergic receptors and pleiotropic effects on AMPK and cAMP/PKA signaling pathways, Arch. Biochem. Biophys., 695, 10.1016/j.abb.2020.108649
Tanner, 2018, Four key steps control glycolytic flux in mammalian cells, Cell Syst., 7, 49, 10.1016/j.cels.2018.06.003
Vohra, 2018, Essential roles of lactate in müller cell survival and function, Mol. Neurobiol., 55, 9108, 10.1007/s12035-018-1056-2
Vohra, 2019, Dual properties of lactate in Müller cells: the effect of GPR81 activation, Invest. Ophthalmol. Vis. Sci., 60, 999, 10.1167/iovs.18-25458
Wyss, 2011, In vivo evidence for lactate as a neuronal energy source, J. Neurosci.: Off. J. Soc. Neurosci., 31, 7477, 10.1523/JNEUROSCI.0415-11.2011
Xue, 2022, The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule, Nutr. Metab., 19, 10.1186/s12986-022-00687-z
Yanase, 2008, Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney, Histochem. Cell Biol., 130, 957, 10.1007/s00418-008-0490-z
Yuan, 2020, Role of pyruvate kinase M2-mediated metabolic reprogramming during podocyte differentiation, Cell Death Dis., 11, 10.1038/s41419-020-2481-5