Role of Intercellular Junctions in Redistribution of Focal Adhesions and Orientation of Vascular Endothelial Cells Exposed to Cyclic Stretching
Tóm tắt
The redistribution of focal adhesions (FAs) containing integrin β1 and paxillin plays an important role in the cyclic stretching-induced morphological changes of endothelial cells (ECs). In addition to focal adhesion kinase (FAK), known to be a primary regulator for FA redistribution, intercellular junctions (IJs) have recently been reported to be involved in signaling upstream of FAs. Here, we addressed the role of IJs in the morphological changes and redistribution of FAs in ECs exposed to cyclic stretching. Both confluent and sparse ECs were oriented nearly perpendicularly to the stretch direction after 10 min of exposure. Orientation of sparse ECs, but not confluent ECs, was suppressed by treatment with a phospho-FAK inhibitor. FAK inhibitor blocked integrin β1 redistribution in ECs, which was observed in non-inhibited cells after 10-min stretch exposure. However, paxillin redistribution in confluent ECs was observed regardless of FAK inhibitor treatment after 2-min stretch exposure. When we blocked signals from IJs with an inhibitor of Src homology 2 domain-containing tyrosine phosphatase-2, the percentage of oriented ECs decreased and paxillin redistribution, but not integrin β1, was suppressed. These findings suggest that IJs are involved in the orientation of ECs subjected to cyclic stretching through signaling pathways other than FAK.
Tài liệu tham khảo
Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.
Bershadsky, A. D., C. Ballestrem, L. Carramusa, Y. Zilberman, B. Gilquin, S. Khochbin, A. Y. Alexandrova, A. B. Verkhovsky, T. Shemesh, and M. M. Kozlov. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85:165–173, 2006.
Bikukov, K. G., J. R. Jacobson, A. A. Flores, S. Q. Ye, A. A. Birukova, A. D. Verin, and J. G. N. Garcia. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L785–L797, 2003.
Chen, C. S., J. A. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.
Chen, L., S. S. Sung, M. L. Yip, H. R. Lawrence, Y. Ren, W. C. Guida, S. M. Sebti, N. J. Lawrence, and J. Wu. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70:562–570, 2006.
Chiu, Y. J., E. McBeath, and K. Fujiwara. Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182:753–763, 2008.
Craig, S. W., and H. Chen. Lamellipodia protrusion: moving interactions of vinculin and Arp2/3. Curr. Biol. 13:R236–R238, 2003.
Dasari, V. R., K. Kaur, K. K. Velpula, D. H. Dinh, A. J. Tsung, S. Mohanam, and J. S. Rao. Downregulation of focal adhesion kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma. Aging (Albany NY) 2:791–803, 2010.
Fuchikawa, T., F. Nakamura, N. Fukuda, K. Takei, and Y. Goshima. Protein tyrosine phosphatase SHP2 is involved in Semaphorin 4D-induced axon repulsion. Biochem. Biophys. Res. Commun. 385:6–10, 2009.
Fujiwara, K. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J. Intern. Med. 259:373–380, 2006.
Goffin, J. M., P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172:259–268, 2006.
Hsu, H. J., C. F. Lee, and R. A. Kaunas. Dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch. PLoS One 4:e4853, 2009.
Katanosaka, Y., J. H. Bao, T. Komatsu, T. Suemori, A. Yamada, S. Mohri, and K. Naruse. Analysis of cyclic-stretching responses using cell-adhesion-patterned cells. J. Biotechnol. 133:82–89, 2008.
Kataoka, N., K. Ujita, K. Kimura, and M. Sato. The morphological responses of cultured bovine aortic endothelial cells to fluid-imposed shear stress under sparse and colony conditions. JSME Int. J. Ser. C 41:76–82, 1998.
Laukaitis, C. M., D. J. Webb, K. Donais, and A. F. Horwitz. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153:1427–1440, 2001.
Li, S., P. Butler, Y. Wang, Y. Hu, D. C. Han, S. Usami, J. L. Guan, and S. Chien. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl Acad. Sci. USA 99:3546–3551, 2002.
Manes, S., E. Mira, C. Gomez-Mouton, Z. J. Zhao, R. A. Lacalle, and A. C. Martinez. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cell. Biol. 19:3125–3135, 1999.
Marin, T. M., C. F. M. Z. Clemente, A. M. Santos, P. K. Picardi, V. D. B. Pascoal, I. Lopes-Cendes, M. J. A. Saad, and K. G. Franchini. Shp-2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/src and mTOR pathways. Circ. Res. 103:813–824, 2008.
Masuda, M., M. Osawa, H. Shigematsu, N. Harada, and K. Fujiwara. Platelet endothelial cell adhesion molecule-1 is a major SH-PTP2 binding protein in vascular endothelial cells. FEBS Lett. 408:331–336, 1997.
Möhl, C., N. Kirchgeßner, C. Schäfer, K. Küpper, S. Born, G. Diez, W. H. Goldmann, R. Merkel, and B. Hoffmann. Becoming stable and strong: the interplay between vinculin exchange dynamics and adhesion strength during adhesion site maturation. Cell Motil. Cytoskeleton 66:350–364, 2009.
Na, S., A. Trache, J. Trzeciakowski, Z. Sun, G. A. Meininger, and J. D. Humphrey. Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiaxial stretch. Ann. Biomed. Eng. 36:369–380, 2008.
Naruse, K., T. Yamada, X. R. Sai, M. Hamaguchi, and M. Sokabe. pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene 17:455–463, 1998.
Nelson, C. M., D. M. Pirone, J. L. Tan, and C. S. Chen. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15:2943–2953, 2004.
Ngu, H., Y. Feng, L. Lu, S. J. Oswald, G. D. Longmore, and F. C. Yin. Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain. Ann. Biomed. Eng. 38:208–222, 2010.
Petzold, T., A. W. Orr, C. Hahn, K. A. Jhaveri, J. T. Parsons, and M. A. Schwartz. Focal adhesion kinase modulates activation of NF-kappaB by flow in endothelial cells. Am. J. Physiol. Cell Physiol. 297:C814–C822, 2009.
Rabodzey, A., P. Alcaide, F. W. Luscinskas, and B. Ladoux. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys. J. 95:1428–1438, 2008.
Sakamoto, N., T. Ohashi, and M. Sato. Effect of magnetic field on nitric oxide synthesis of cultured endothelial cells. Int. J. Appl. Electrom. 14:317–322, 2001.
Shikata, Y., A. Rios, K. Kawkitinarong, N. DePaola, J. G. Garcia, and K. G. Birukov. Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp. Cell Res. 304:40–49, 2005.
Suzuki, M., K. Naruse, Y. Asano, T. Okamoto, N. Nishikimi, T. Sakurai, Y. Nimura, and M. Sokabe. Up-regulation of integrin beta 3 expression by cyclic stretch in human umbilical endothelial cells. Biochem. Biophys. Res. Commun. 239:372–376, 1997.
Tanaka, T., R. Yamaguchi, H. Sabe, K. Sekiguchi, and J. M. Healy. Paxillin association in vitro with integrin cytoplasmic domain peptides. FEBS Lett. 399:53–58, 1996.
Tymchenko, N., J. Wallentin, S. Petronis, L. M. Bjursten, B. Kasemo, and J. Gold. A novel cell force sensor for quantification of traction during cell spreading and contact guidance. Biophys. J. 93:335–345, 2007.
Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431, 2005.
Ueki, Y., N. Sakamoto, T. Ohashi, and M. Sato. Morphological responses of vascular endothelial cells induced by local stretch transmitted through intercellular junctions. Exp. Mech. 49:125–134, 2009.
Ukropec, J. A., M. K. Hollinger, S. M. Salva, and M. J. Woolkalis. SHP-2 association with VE–cadherin complexes in human endothelial cells is regulated by thrombin. J. Biol. Chem. 275(8):5983–5986, 2000.
von Wichert, G., B. Haimovich, G. S. Feng, and M. P. Sheetz. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 22:5023–5035, 2003.
Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98:11295–11300, 2001.
Wang, J. H.-C., G. Yang, Z. Li, and W. Shen. Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. J. Biomech. 37:573–576, 2004.
Wen, H., P. A. Blume, and B. E. Sumpio. Role of integrins and focal adhesion kinase in the orientation of dermal fibroblasts exposed to cyclic strain. Int. Wound J. 6:149–158, 2009.
Yano, Y., J. Geibel, and B. E. Sumpio. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol. 271:C635–C649, 1996.
Yano, Y., J. Geibel, and B. E. Sumpio. Cyclic strain induces reorganization of integrin alpha 5 beta 1 and alpha 2 beta 1 in human umbilical vein endothelial cells. J. Cell. Biochem. 64:505–513, 1997.
Yonemura, S., Y. Wada, T. Watanabe, A. Nagafuchi, and M. Shibata. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542, 2010.
Zhao, Z. S., E. Manser, T. H. Loo, and L. Lim. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20:6354–6363, 2000.
Zhu, J. X., G. Cao, J. T. Williams, and H. M. Delisser. SHP-2 phosphatase activity is required for PECAM-1-dependent cell motility. Am. J. Physiol. Cell Physiol. 299:C854–C865, 2010.