Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis

Nature - Tập 394 Số 6692 - Trang 485-490 - 1998
Peter Carmeliet1, Yuval Dor2, J M Herbert3, Dai Fukumura4, Koen Brusselmans1, Mieke Dewerchin1, Michal Neeman5, Françoise Bono3, Rinat Abramovitch5, Patrick H. Maxwell6, C J Koch7, Peter J. Ratcliffe6, Lieve Moons1, Rakesh K. Jain4, Désiré Collen1, Eli Keshet2
1Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KU Leuven, Belgium
2Department of Molecular Biology, Hebrew University-Hadassah Medical School, Israel
3Haemobiology Research Department, Sanofi Recherche, France
4Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
5Department of Biological Regulation Weizmann Institute of Science, Israel
6Institute of Molecular Medicine, John Radcliffe Hospital, Wellcome Trust Centre for Human Genetics, UK
7Department of Radiation Oncology, School of Medicine, University of Pennsylvania, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hyopoxia. Physiol. Rev. 76, 839–885 (1996).

Wenger, R. H. & Gassmann, M. Oxygen(s) and the hypoxia-inducible factor-1. Biol. Chem. 378, 609–616 (1997).

Semenza, G. L. Transcriptional regulation by hypoxia-inducible factor-1. Trends Cardiovasc. Med. 6, 151–157 (1996).

Iyer, N. V.et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor-1α. Genes Dev. 12, 149–162 (1998).

Dor, Y. & Keshet, E. Ischemia-driven angiogenesis. Trends Cardiovasc. Med. 7, 289–294 (1997).

Gartel, A. L., Serfas, M. S. & Tyner, A. L. p21–negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213, 138–149 (1996).

Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

Price, B. D. & Calderwood, S. K. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res. 52, 3814–3817 (1992).

Little, E., Ramakrishnan, M., Roy, B., Gazit, G. & Lee, A. S. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit. Rev. Eukaryot. Gene Expr. 4, 1–18 (1994).

Wood, S. M.et al. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1α subunit. Characterization of HIF-1α dependent and independent hypoxia-inducible gene expression. J. Biol. Chem. 273, 8360–8367 (1998).

Liebermann, D. A., Hoffman, B. & Steinman, R. A. Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11, 199–210 (1995).

Cox, L. S. Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1. J. Pathol. 183, 134–140 (1997).

Graeber, T. G.et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14, 6264–6277 (1994).

Strasser, A., Huang, D. C. & Vaux, D. L. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumorigenesis and resistance to chemotherapy. Biochim. Biophys. Acta 1333, F151–178 (1997).

Maxwell, P. H.et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, C. M. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

Schmaltz, C., Harrigan Hardenbergh, P., Wells, A. & Fisher, D. E. Regulation of proliferation–survival decisions during tumor cell hypoxia. Mol. Cell. Biol. 18, 2845–2854 (1998).

Collins, M. K., Perkins, G. R., Rodriguez Tarduchy, G., Nieto, M. A. & Lopez Rivas, A. Growth factors as survival factors: regulation of apoptosis. Bioessays 16, 133–138 (1994).

Lin, Y. & Benchimol, S. Cytokines inhibit p53-mediated apoptosis but not p53-mediated G1 arrest. Mol. Cell. Biol. 15, 6045–6054 (1995).

Vaupel, P. The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin. Pädiatr. 209, 243–249 (1997).

Yuan, F.et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA 93, 14765–14770 (1996).

Graeber, T. G.et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and p O2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).

An, W. G.et al. Stabilization of wild-type p53 by hypoxia-inducible factor-1α. Nature 392, 405–408 (1998).

Jiang, B. H., Rue, E., Wang, G. L., Roe, R. & Semenza, G. L. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor-1. J. Biol. Chem. 271, 17771–17778 (1996).

Carmeliet, P.et al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth-factor allele. Nature 380, 435–439 (1996).

Abramovitch, R., Frenkiel, D. & Neeman, M. Analysis of subcutaneous angiogenesis by gradient echo magnetic resonance imaging. Magn. Reson. Med. 39, 813–824 (1998).

Kobayashi, N., Kobayashi, K., Kouno, K., Horinaka, S. & Yagi, S. Effects of intra-arterial injection of colored microspheres on systemic hemodynamics and regional blood flow in rats. Am. J. Physiol. 266, H1910–H1917 (1994).

Evans, S. M.et al. Identification of hypoxia in cells and tissues of epigastric 9L rat glioma using EF5 (2-(2-nitro-1H-imidazol-1-yl)- N -(2,2,3,3,3-pentafluoropropyl) acetamide). Br. J. Cancer 72, 875–882 (1995).

Herbert, J. M. & Carmeliet, P. Involvement of u-PA in the anti-apoptotic activity of TGFβ for vascular smooth muscle cells. FEBS Lett. 413, 401–404 (1997).