Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdel Latef, 2011, Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.), Mycorrhiza, 21, 495, 10.1007/s00572-010-0360-0
Abdel Latef, 2011, Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress, Sci. Hort., 127, 228, 10.1016/j.scienta.2010.09.020
Abdel Latef, 2011, Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress, Acta Physiol. Plant., 33, 1217, 10.1007/s11738-010-0650-3
Abdel Latef, 2014, Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants, Plant Grow. Regul., 33, 644, 10.1007/s00344-014-9414-4
Abdel Latef, 2014, The role of arbuscular mycorrhizal fungi in alleviation of salt stress. Use of microbes for the alleviation of soil stresses, 23, 10.1007/978-1-4939-0721-2_2
Abdelhameed, 2019, Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis, Int. J. Phytoremed., 10.1080/15226514.2018.1556584
Aguilera, 2014, Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an andosol with high aluminum level, Agri. Eco. Environ., 186, 178, 10.1016/j.agee.2014.01.029
Ahanger, 2018, Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate–glutathione cycle and glyoxalase system, PLoS One, 13, 10.1371/journal.pone.0202175
Ahanger, 2017, Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.), Protoplasma, 254, 1471, 10.1007/s00709-016-1037-0
Ahanger, 2017, Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium, Protoplasma, 254, 1953, 10.1007/s00709-017-1086-z
Ahanger, 2017, Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions, Physiol. Mol. Biol. Plants., 23, 731, 10.1007/s12298-017-0462-7
Ahanger, 2014, Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients, Physiological mechanisms and adaptation strategies in plants under changing environment, 25, 10.1007/978-1-4614-8591-9_2
Ahmad, 2010, Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress, Crit. Rev. Biotechnol., 30, 161, 10.3109/07388550903524243
Ait-El-Mokhtar, 2019, Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress, Sci. Hori., 253, 429, 10.1016/j.scienta.2019.04.066
Al-Hmoud, 2017, Effect of four mycorrhizal products on squash plant growth and its effect on physiological plant elements, Adv. Crop. Sci. Tech., 5, 260, 10.4172/2329-8863.1000260
Ali, 2015, Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices, Environ. Monitor. Assess., 187, 311, 10.1007/s10661-015-4557-8
Al-Karaki, 2004, Field response of wheat to arbuscular mycorrhizal fungi and drought stress, Mychorrhiza, 14, 263, 10.1007/s00572-003-0265-2
Alqarawi, 2014, Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk, J. Plant. Interact., 9, 802, 10.1080/17429145.2014.949886
Alqarawi, 2014, Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne, Acta Biol. Hung., 65, 61, 10.1556/ABiol.65.2014.1.6
Amiri, 2017, Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress, Symbiosis, 73, 15, 10.1007/s13199-016-0466-z
Amiri, 2015, Alleviation of drought stress on rose geranium Pelargonium graveolen L Herit. in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation, Sci. Hort., 197, 373, 10.1016/j.scienta.2015.09.062
Andrade, 2008, Mycorrhiza influence on maize development under Cd stress and P supply, Braz. J. Plant Physiol., 20, 39, 10.1590/S1677-04202008000100005
Aroca, 2013, Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants, J. Plant Physiol., 170, 47, 10.1016/j.jplph.2012.08.020
Asrar, 2012, Improving growth, flower yield, and water relations of snapdragon Antirhinum majus L. plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi, Photosynthetica, 50, 305, 10.1007/s11099-012-0024-8
Audet, 2014, Arbuscular mycorrhizal fungi and metal phytoremediation: ecophysiological complementarity in relation to environmental stress, Emerging technologies and management of crop stress tolerance, 133, 10.1016/B978-0-12-800875-1.00006-5
Augé, 2014, Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis, Front. Plant. Sci., 5, 562, 10.3389/fpls.2014.00562
Bagheri, 2012, Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress, J. Agric. Sci. Technol., 14, 1591, 10.5367/oa.2012.0109
Bago, 2000, Carbon metabolism and transport in arbuscular mycorrhizas, Plant Physiol., 124, 949, 10.1104/pp.124.3.949
Balliu, 2015, AMF Inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings, Sustainability, 7, 15967, 10.3390/su71215799
Barrow, 2012, Biochar potential for countering land degradation and for improving agriculture, App. Geogr., 34, 21, 10.1016/j.apgeog.2011.09.008
Bárzana, 2012, Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions, Ann. Bot., 109, 1009, 10.1093/aob/mcs007
Bárzana, 2015, Localized and nonlocalized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying, Plant Cell Environ., 38, 1613, 10.1111/pce.12507
Baslam, 2011, Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse grown lettuce, J. Agric. Food Chem., 59, 5504, 10.1021/jf200501c
Bati, 2015, Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels, Mycorrhiza, 25, 97, 10.1007/s00572-014-0589-0
Battini, 2017, Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria, Sci. Rep., 7, 4686, 10.1038/s41598-017-04959-0
Bauddh, 2012, Growth: tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil, Ecotoxicol. Environ. Saf., 85, 13, 10.1016/j.ecoenv.2012.08.019
Bayani, 2015, Influence of arbuscular mycorrhiza in phosphorus acquisition efficiency and drought-tolerance mechanisms in barley Hordeum vulgare L, Int. J. Biosci., 7, 86, 10.12692/ijb/7.1.86-94
Berruti, 2016, Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes, Front. Microbiol., 6, 1559, 10.3389/fmicb.2015.01559
Birhane, 2012, Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions, Oecologia, 169, 895, 10.1007/s00442-012-2258-3
Bisleski, 1973, Phosphate pools, phosphate transport, and phosphate availability, Annu. Rev. Plant Physiol., 24, 225, 10.1146/annurev.pp.24.060173.001301
Bona, 2017, Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study, Mycorrhiza, 27, 1, 10.1007/s00572-016-0727-y
Borde, 2010, AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition, Not. Sci. Biol., 2, 64, 10.15835/nsb245434
Bowles, 2016, Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions, Sci. Total Environ., 566, 1223, 10.1016/j.scitotenv.2016.05.178
Boyer, 2014, Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water, Mycorrhiza, 25, 215, 10.1007/s00572-014-0603-6
Bucher, 2007, Functional biology of plant phosphate uptake at root and mycorrhizae interfaces, New Phytol., 173, 11, 10.1111/j.1469-8137.2006.01935.x
Bucking, 2015, Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps, Agronomy, 5, 587, 10.3390/agronomy5040587
Bunn, 2009, Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants, Ecology, 90, 1378, 10.1890/07-2080.1
Cabral, 2016, Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress, Plant Soil, 408, 385, 10.1007/s11104-016-2942-x
Calvo-Polanco, 2016, Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato, Environ. Exp. Bot., 131, 47, 10.1016/j.envexpbot.2016.06.015
Castellanos-Morales, 2010, Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruit (Fragaria ananassa Duch.) at different nitrogen levels, J. Sci. Food Agric., 90, 1774, 10.1002/jsfa.3998
Cekic, 2012, Effects of arbuscular mycorrhizal inoculation on biochemical parameters in capsicum annuum grown under long term salt stress, Turk. J. Bot., 36, 63, 10.3906/bot-1008-32
Chandrasekaran, 2019, Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress—a meta-analysis, Front. Plant Sci., 10, 457, 10.3389/fpls.2019.00457
Chen, 2013, Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress, Sci. Hort., 160, 222, 10.1016/j.scienta.2013.05.039
Chen, 2017, Combined Inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings, Front. Microbiol., 8, 10.3389/fmicb.2017.02516
Clark, 2000, Mineral acquisition by arbuscular mycorrhizal plants, J. Plant Nutr., 23, 867, 10.1080/01904160009382068
Corrêa, 2015, Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown, Mycorrhiza, 25, 499, 10.1007/s00572-015-0627-6
Courty, 2015, Inorganic nitrogen uptake and transport in beneficial plant root–microbe interactions, Crit. Rev. Plant Sci., 34, 4, 10.1080/07352689.2014.897897
De Andrade, 2015, Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress, Chemosphere, 134, 141, 10.1016/j.chemosphere.2015.04.023
Dong, 2008, Arbuscular mycorrhiza enhanced arsenic resistance of both white clover Trifolium repens L. and ryegrass Lolium perenne L. plants in an arsenic-contaminated soil, Environ. Pollut., 155, 174, 10.1016/j.envpol.2007.10.023
Duan, 1996, Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought, J. Exp. Bot., 47, 1541, 10.1093/jxb/47.10.1541
Duc, 2018, Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants, Plant Physiol. Biochem., 132, 297, 10.1016/j.plaphy.2018.09.011
Elhindi, 2017, The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.), Saudi J. Biol. Sci., 24, 170, 10.1016/j.sjbs.2016.02.010
EL-Nashar, 2017, Response of snapdragon Antirrhinum majus L. to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations, Photosynthetica, 55, 201, 10.1007/s11099-016-0650-7
Evelin, 2012, Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum, Mycorrhiza, 22, 203, 10.1007/s00572-011-0392-0
Evelin, 2009, Arbuscular mycorrhizal fungi in alleviation of salt stress: a review, Ann. Bot., 104, 1263, 10.1093/aob/mcp251
Gamalero, 2009, Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress, Can. J. Microbiol., 55, 245, 10.1139/W09-010
Garcés-Ruiz, 2017, Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system, Front. Plant Sci., 8, 1471, 10.3389/fpls.2017.01471
Garg, 2017, Arbuscular mycorrhiza Rhizophagus irregularis, and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan, L. Millsp. (pigeon pea) genotypes under cadmium and zinc stress, J. Plant Growth Regul., 37, 1, 10.1007/s00344-017-9708-4
Garg, 2012, Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses, J. Plant Growth Regul., 31, 292, 10.1007/s00344-011-9239-3
Gavito, 2005, Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi, New Phytol., 168, 179, 10.1111/j.1469-8137.2005.01481.x
Gholamhoseini, 2013, Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress, Agric. Water Manag., 117, 106, 10.1016/j.agwat.2012.11.007
Gianinazzi, 2010, Agroecology: the key role of arbuscular mycorrhizas in ecosystem services, Mycorrhiza, 20, 519, 10.1007/s00572-010-0333-3
Giri, 2007, Improved tolerance of acacia nilotica, to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K/Na ratios in root and shoot tissues, Microbiol. Ecol., 54, 753, 10.1007/s00248-007-9239-9
Goicoechea, 2017, Increased nutritional value in food crops, Microbiol. Biotechnol., 10, 1004, 10.1111/1751-7915.12764
Goicoechea, 2016, Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration, Crop Past. Sci., 67, 147, 10.1071/CP15212
Gomez-Bellot, 2015, Mycorrhizal euonymus plants and reclaimed water: biomass, water status and nutritional responses, Sci. Hort., 186, 61, 10.1016/j.scienta.2015.02.022
Govindarajulu, 2005, Nitrogen transfer in the arbuscular mycorrhizal symbiosis, Nature, 435, 819, 10.1038/nature03610
Grümberg, 2015, The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean, Biol. Fert. Soils, 51, 1, 10.1007/s00374-014-0942-7
Guether, 2009, A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi, Plant Physiol., 150, 73, 10.1104/pp.109.136390
Gutjahr, 2013, Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis, Front. Plant Sci., 4, 204, 10.3389/fpls.2013.00204
Hajiboland, 2010, Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato Solanum lycopersicum L. plants, Plant Soil., 331, 313, 10.1007/s11104-009-0255-z
Hajiboland, 2015, Physiological responses of halophytic C4 grass, Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization, Photosynthetica, 53, 572, 10.1007/s11099-015-0131-4
Hameed, 2014, Salinity stress and arbuscular mycorrhizal symbiosis in plants, Use of microbes for the alleviation of soil stresses, 139, 10.1007/978-1-4614-9466-9_7
Hammer, 2011, Elemental composition of arbuscular mycorrhizal fungi at high salinity, Mycorrhiza, 21, 117, 10.1007/s00572-010-0316-4
Hart, 2015, Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes, Mycorrhiza, 25, 359, 10.1007/s00572-014-0617-0
Hasanuzzaman, 2013, Physiological role of nitric oxide in plants grown under adverse environmental conditions, Plant acclimation to environmental stress, 269, 10.1007/978-1-4614-5001-6_11
Hashem, 2015, Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways, J. Plant Interact., 10, 230, 10.1080/17429145.2015.1052025
Hashem, 2018, Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L, Saudi J. Biol. Sci., 25, 1102, 10.1016/j.sjbs.2018.03.009
He, 2017, Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought Stress, Front. Plant Sci., 8, 183, 10.3389/fpls.2017.00183
Hijri, 2016, Analysis of a large dataset form field mycorrhizal inoculation trials on potato showed highly significant increase in yield, Mycorrhiza, 2, 209, 10.1007/s00572-015-0661-4
Hodge, 2010, Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling, Proc. Natl. Acad. Sci., 107, 13754, 10.1073/pnas.1005874107
Hodge, 2015, Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems, Plant Soil., 386, 1, 10.1007/s11104-014-2162-1
Impa, 2012, Drought stress induced reactive oxygen species and anti-oxidants in plants, Abiotic stress responses in plants: metabolism, productivity and sustainability, 131, 10.1007/978-1-4614-0634-1_7
Janouškova, 2010, Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium, Plant Soil, 332, 511, 10.1007/s11104-010-0317-2
Jiang, 2017, Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi, Science, 356, 1172, 10.1126/science.aam9970
Jin, 2005, The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis, New Phytol., 168, 687, 10.1111/j.1469-8137.2005.01536.x
Jixiang, 2017, Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition, Sci. Total Environ., 576, 234, 10.1016/j.scitotenv.2016.10.091
Jung, 2012, Mycorrhiza-induced resistance and priming of plant defenses, J. Chem. Ecol., 38, 651, 10.1007/s10886-012-0134-6
Kanwal, 2015, Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil, Am. J. Plant Sci., 6, 2906, 10.4236/ajps.2015.618287
Kapoor, 2013, Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture, Plant acclimation to environmental stress, 359, 10.1007/978-1-4614-5001-6_14
Kayama, 2014, Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil, Trees, 28, 569, 10.1007/s00468-013-0973-y
Khalloufi, 2017, The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato Solanum lycopersicum L. plants by modifying the hormonal balance, J. Plant Physiol., 214, 134, 10.1016/j.jplph.2017.04.012
Kubikova, 2001, Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode, J. Plant Physiol., 158, 1227, 10.1078/0176-1617-00441
Lehmann, 2015, Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—a meta-analysis, Soil Biol. Biochem., 81, 147, 10.1016/j.soilbio.2014.11.013
Lehmann, 2014, Arbuscular mycorrhizal influence on zinc nutrition in crop plants: a meta-analysis, Soil Biol. Biochem., 69, 123, 10.1016/j.soilbio.2013.11.001
Li, 2015, Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains, Chemosphere, 145, 224, 10.1016/j.chemosphere.2015.10.067
Li, 2016, Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice, Sci. Total Environ., 571, 1183, 10.1016/j.scitotenv.2016.07.124
Li, 2019, Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis, Front. Plant Sci., 10, 499, 10.3389/fpls.2019.00499
Li, 2016, Improving crop nutrient efficiency through root architecture modifications, J. Integr. Plant Biol., 58, 193, 10.1111/jipb.12434
Lin, 2007, Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization, Environ. Geochem. Health, 29, 473, 10.1007/s10653-007-9116-y
Liu, 2018, Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying, J. Agric. Sci., 156, 46, 10.1017/S0021859618000023
Liu, 2014, Growth, cadmium uptake and accumulation of maize Zea mays L. under the effects of arbuscular mycorrhizal fungi, Ecotoxicology, 23, 1979, 10.1007/s10646-014-1331-6
Liu, 2013, Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis, Sci. Total. Environ., 530, 10.1016/j.scitotenv.2013.06.064
Lu, 2015, The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content, Peer J., 3, 12, 10.7717/peerj.1266
Ludwig-Müller, 2010, Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi, Arbuscular mycorrhizas: Physiology and function, 169, 10.1007/978-90-481-9489-6_8
Luginbuehl, 2017, Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant, Science, 356, 1175, 10.1126/science.aan0081
Mathur, 2016, Improved photosynthetic efficacy of maize Zea mays plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress, J. Photochem. Photobiol. B, 180, 149, 10.1016/j.jphotobiol.2018.02.002
Maya, 2013, Influence of arbuscular mycorrhiza on the growth and antioxidative activity in Cyclamen under heat stress, Mycorrhiza, 23, 381, 10.1007/s00572-013-0477-z
Mena-Violante, 2006, Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought, Mycorrhiza, 16, 261, 10.1007/s00572-006-0043-z
Miransari, 2017, Arbuscular mycorrhizal fungi and heavy metal tolerance in plants, Arbuscular mycorrhizas and stress tolerance of plants, 10.1007/978-981-10-4115-0_7
Mirshad, 2016, Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass Saccharum arundinaceum, Retz, Environ. Monit. Assess., 188, 425, 10.1007/s10661-016-5428-7
Mitra, 2019, Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture, Int. J. Life Sci. Appl. Sci., 1, 1
Moghadam, 2016, Application of super absorbent polymer and ascorbic acid to mitigate deleterious effects of cadmium in wheat, Pesqui. Agropecu. Trop., 6, 9, 10.1590/1983-40632016v4638946
Moradtalab, 2019, Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry, Agronomy, 9, 41, 10.3390/agronomy9010041
Morte, 2000, Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense–Terfezia claveryi, Mycorrhiza, 10, 115, 10.1007/s005720000066
Navarro, 2014, Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the root stock salt tolerance, J. Plant Physiol., 171, 76, 10.1016/j.jplph.2013.06.006
Nell, 2010, Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L, Planta Med., 76, 393, 10.1055/s-0029-1186180
Nouri, 2015, Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrid, PLoS One, 9, e90, 10.1371/journal.pone.0127472
Orfanoudakis, 2010, Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa, Mycorrhiza, 20, 117, 10.1007/s00572-009-0271-0
Ortas, 2012, The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions, Field Crops Res., 125, 35, 10.1016/j.fcr.2011.08.005
Ouziad, 2005, Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress, J. Plant Physiol., 162, 634, 10.1016/j.jplph.2004.09.014
Pal, 2016, Role of arbuscular mycorrhizal fungi on plant growth and reclamation of barren soil with wheat (Triticum aestivum L.) crop, Int. J. Soil Sci., 12, 25, 10.3923/ijss.2017.25.31
Paterson, 2016, Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralization, Plant Soil., 408, 243, 10.1007/s11104-016-2928-8
Pavithra, 2018, Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants, Ground Water Sust. Dev., 7, 490, 10.1016/j.gsd.2018.03.005
Pedranzani, 2016, Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels, Mycorrhiza, 26, 141, 10.1007/s00572-015-0653-4
Pellegrino, 2014, Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi, Soil Biol. Biochem., 68, 429, 10.1016/j.soilbio.2013.09.030
Plassard, 2010, Phosphorus nutrition of mycorrhizal trees, Tree Physiol., 30, 1129, 10.1093/treephys/tpq063
Porcel, 2015, Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress, J. Plant Physiol., 185, 75, 10.1016/j.jplph.2015.07.006
Prasad, 2017, Introduction to mycorrhiza: historical development, Mycorrhiza, 1
Pringle, 2009, Mycorrhizal symbioses and plant invasions, Ann. Rev. Ecol. Evol. Syst., 40, 699, 10.1146/annurev.ecolsys.39.110707.173454
Punamiya, 2010, Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass Chrysopogon zizanioides L, J. Hazard. Mater., 177, 465, 10.1016/j.jhazmat.2009.12.056
Effect of arbuscular mycorrhiza fungi on biochemical parameters in wheat Triticum aestivum L. under drought conditions RaniB. HisarCCSHAUDoctoral dissertation2016
Redecker, 2013, An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota), Mycorrhiza, 23, 515, 10.1007/s00572-013-0486-y
Rodriguez, 2008, Stress tolerance in plants via habitat-adapted symbiosis, Int. Soc. Microb. Ecol., 2, 404, 10.1038/ismej.2007.106
Rouphael, 2015, Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops, Sci. Hort., 196, 91, 10.1016/j.scienta.2015.09.002
Ruiz-Lozano, 2003, Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, Mycorrhiza, 13, 309, 10.1007/s00572-003-0237-6
Ruiz-Lozano, 2015, Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato, Plant Cell Environ., 39, 441, 10.1111/pce.12631
Ruiz-Sánchez, 2010, The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress, J. Plant Physiol., 167, 862, 10.1016/j.jplph.2010.01.018
Sabia, 2015, Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects, Italian J. Agron., 10, 30, 10.4081/ija.2015.607
Sadhana, 2014, Arbuscular mycorrhizal fungi (AMF) as a biofertilizers—a review, Int. J. Curr. Microbiol. App. Sci., 3, 384
Salam, 2017, Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose, Saudi J. Biol. Sci., 25, 1772, 10.1016/j.sjbs.2017.10.015
Santander, 2019, Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance, J. Soil Sci. Plant Nutr., 19, 321, 10.1007/s42729-019-00032-z
Sara, 2018, Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea), Acta Physiol. Plant., 40, 1, 10.1007/s11738-018-2656-1
Sbrana, 2014, Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals, Electrophoresis, 35, 1535, 10.1002/elps.201300568
Selosse, 2015, Plants, fungi and oomycetes: a 400-million years affair that shapes the biosphere, New Phytol., 206, 501, 10.1111/nph.13371
Sharma, 2017, Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro, Asian J. Plant Pathol., 11, 192, 10.3923/ajppaj.2017.199.202
Shen, 2006, Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays, L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium, Environ. Geochem. Health, 28, 111, 10.1007/s10653-005-9020-2
Sheng, 2011, Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress, Mycorrhiza, 21, 423, 10.1007/s00572-010-0353-z
Smith, 1997, Mycorrhizal symbiosis, 607
Smith, 2008, Mycorrhiza symbiosis
Smith, 2011, Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition, Plant Physiol., 156, 1050, 10.1104/pp.111.174581
Smith, 2003, Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses, Plant Physiol., 133, 16, 10.1104/pp.103.024380
Souza, 2012, Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb contaminated soils, Int. J. Phytorem., 15, 465, 10.1080/15226514.2012.716099
Spatafora, 2016, A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data, Mycologia, 108, 1028, 10.3852/16-042
Sun, 2018, Arbuscular mycorrhizal fungal proteins 14-3-3- are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis, Front. Microbiol., 5, 9, 10.3389/fmicb.2018.00091
Syamsiyah, 2018, The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil, IOP Conf. Series: Earth Environ. Sci., 142, 012045, 10.1088/1755-1315/142/1/012045
Takács, 2003, Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd, Ni and Zn uptake by ryegrass, Acta Agron. Hung., 51, 347, 10.1556/AAgr.51.2003.3.13
Talaat, 2014, Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity, Environ. Exp. Bot., 98, 20, 10.1016/j.envexpbot.2013.10.005
Tanaka, 2005, Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied, Plant Cell Environ., 28, 1247, 10.1111/j.1365-3040.2005.01360.x
Thirkell, 2017, Are mycorrhizal fungi our sustainable saviours considerations for achieving food security, J. Ecol., 105, 921, 10.1111/1365-2745.12788
Tsoata, 2015, Early effects of water stress on some biochemical and mineral parameters of mycorrhizal Vigna subterranea (L.) Verdc. (Fabaceae) cultivated in Cameroon, Int. J. Agron. Agric. Res., 7, 21
Turrini, 2018, Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species, Biol. Fertil. Soils, 54, 203, 10.1007/s00374-017-1254-5
Van der Heijden, 2015, Mycorrhizal ecology and evolution: the past, the present, and the future, New Phytol., 205, 1406, 10.1111/nph.13288
Wagg, 2015, Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other, J. Ecol., 103, 1233, 10.1111/1365-2745.12452
Wahid, 2007, Heat tolerance in plants: an overview, Environ. Exp. Bot., 61, 199, 10.1016/j.envexpbot.2007.05.011
Wang, 2012, Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity, PLoS One, 7, 3161, 10.1371/journal.pone.0048669
Wang, 2018, Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress, PLoS One, 13, 10.1371/journal.pone.0196408
Wu, 2014, Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment, Soil Biol. Biochem., 68, 283, 10.1029/2007JD008789
Yang, 2004, Long term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China, Agron. J., 96, 1039, 10.2134/agronj2004.1039
Yang, 2014, Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia, L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress, J. Plant Growth Regul., 33, 612, 10.1007/s00344-013-9410-0
Yin, 2016, Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation, Envi. Sci. Pollut. Res., 23, 17840, 10.1007/s11356-016-6941-5
Yooyongwech, 2013, Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation, Plant Growth Regul., 69, 285, 10.1007/s10725-012-9771-6
Yooyongwech, 2016, Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline, Sci Hort., 198, 107, 10.1016/j.scienta.2015.11.002
Yost, 1982, Influence of mycorrhizae on the mineral contents of cowpea and soybean grown in an oxisol, Agron. J., 74, 475, 10.2134/agronj1982.00021962007400030018x
Yousaf, 2016, Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas, Environ. Sci. Pollut. Res., 23, 22443, 10.1007/s11356-016-7449-8
Zaefarian, 2013, Impact of mycorrhizae formation on the phosphorus and heavy-metal uptake of Alfalfa, Comm. Soil Sci. Plant Anal., 44, 1340, 10.1080/00103624.2012.756505
Zeng, 2014, Effects of arbuscular mycorrhizal (AM) fungi on citrus quality under nature conditions, Southwest China J. Agric. Sci., 27, 2101, 10.16213/j.cnki.scjas.2014.05.067
Zhang, 2018, Enhancement of drought tolerance in trifoliate orange by mycorrhiza: changes in root sucrose and proline metabolisms, Not. Bot. Horti. Agrobot. Cluj-Napoca, 46, 270, 10.15835/nbha46110983
Zhang, 2018, Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress, Ind. Crop. Prod., 117, 13, 10.1016/j.indcrop.2018.02.087
Zhang, 2016, Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.), J. Sci. Food Agric., 97, 2919, 10.1002/jsfa.8129
Zhao, 2015, Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays, L.) grown in two types of coal mine spoils under drought stress, Appl. Soil Ecol., 88, 41, 10.1016/j.apsoil.2014.11.016
Zhu, 2012, Arbuscular mycorrhizae improve photosynthesis and water status of Zea mays L. under drought stress, Plant Soil Environ., 58, 186, 10.4161/psb.11498
Zhu, 2010, Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis, Plant Soil., 331, 129, 10.1007/s11104-009-0239-z
Zhu, 2016, Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2, Mycorrhiza, 26, 133, 10.1007/s00572-015-0654-3
Zhu, 2010, Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress, Acta Ecol. Sin., 21, 470, 10.1556/AAgr.51.2003.3.13
Zhu, 2012, Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress, Plant Soil Environ., 58, 186, 10.1007/s11032-011-9671-x