Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: A review

Polymers for Advanced Technologies - Tập 29 Số 6 - Trang 1568-1585 - 2018
Karthik Babu1, T. Ramesh
1Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India

Tóm tắt

Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.

Từ khóa


Tài liệu tham khảo

10.1007/978-94-011-1292-5

ASTM D3878‐16. Standard Terminology for Composite Materials 4 p.

ASTM D883‐12. Standard Terminology Relating to Plastics 5 p.

10.1016/j.compositesb.2017.03.047

10.1016/j.compscitech.2017.01.016

10.1016/j.compositesb.2016.11.021

10.4028/www.scientific.net/KEM.727.553

10.1038/s41598-017-03273-z

10.1021/jp3026545

10.1177/0095244313516887

10.1016/j.compositesa.2014.10.027

10.1002/pc.23239

10.1016/j.compositesa.2009.04.005

10.3390/molecules21050670

10.1155/2012/250364

10.1177/0021998310393297

10.3144/expresspolymlett.2011.57

Wang Z, 2016, Thermal conductivity and electric breakdown strength properties of epoxy/ alumina /boron nitride nanosheets composites, IEEE int Conf Dielectr ICD, 355

10.1115/1.2804097

10.1007/s10853-016-0016-3

10.1007/b136496

10.1016/j.matdes.2014.10.052

10.1016/j.jallcom.2017.01.182

10.1016/j.compscitech.2016.01.010

10.1002/pc.24268

10.1016/j.tca.2012.03.002

10.1016/j.ijheatmasstransfer.2015.05.080

10.1002/pat.1638

10.1038/srep34726

10.1080/03602559.2012.716479

Hong J, 2010, Interphase control of boron nitride / epoxy composites for high thermal conductivity, Korea Aust Rheol J, 22, 259

10.1016/j.tca.2014.06.029

10.1002/pssa.201330213

10.1016/j.jallcom.2016.01.120

10.1080/108939501753222869

10.1016/j.compositesa.2017.03.030

10.1002/pat.3747

10.1016/j.compositesb.2015.09.021

10.1007/s12613-011-0487-9

10.1016/j.mattod.2014.04.003

10.1007/s10853-014-8198-z

10.1016/j.ijheatmasstransfer.2015.11.045

10.1021/am401939z

10.1016/j.ijthermalsci.2015.09.013

10.1016/j.compositesb.2016.02.052

10.1016/j.ceramint.2015.06.053

10.1021/cm401488a

10.1016/j.tca.2016.06.016

10.4236/ojcm.2011.11002

10.1021/i160049a004

10.1016/j.ijthermalsci.2006.11.003

10.1016/S0009-2614(03)00956-4

10.1063/1.1808874

10.1016/j.compositesa.2015.08.004

10.1002/pat.1898

10.1002/adma.201401310

10.1002/adma.201301752

10.1002/marc.200900425

10.1002/adma.201404591

10.1016/S0079-6700(00)00043-5

Greig WJ, 2007, Integrated Circuit Packaging, Assembly and Interconnections

Tummala RR, 2001, Fundamentals of Microsystems Packaging

10.1016/j.pmatsci.2011.08.001

Edwards M, 2014, Temperature dependent surface resistivity measures of commercial, multiwall carbon nanotubes (MWCNT), and silver nano‐particle doped polyvinyl alcohol (PVA) films, Mater Sci Appl, 5, 915

10.1016/S1002-0071(12)60033-1

10.1016/j.matlet.2009.11.066

10.1038/srep33508

10.1021/nn9006412

10.1039/C3TC31757A

10.1038/srep35763

10.1039/C4TA05673F

ZhouW GongY TuL XuL ZhaoW CaiJ.Dielectric properties and thermal conductivity of core‐shell structured Ni @ NiO / poly (vinylidene fluoride) composites.2017;693:1–8. doi:https://doi.org/10.1016/j.jallcom.2016.09.178.

10.1063/1.4789504

10.3390/cryst7050126

10.1039/C5RA06684K

10.1039/C6RA00827E

Fang F, 2014, High dielectric performance of polymer composites based on BaTiO3‐supporting Ag hybrid fillers, Conf Electron Packag Technol, 2014, 462

10.1080/00150193.2013.844011

10.1002/app.39049

10.1039/C5RA15681E

10.1021/am504833v

10.1002/pat.1454

10.1039/b618910e

10.1016/j.matlet.2010.10.027

10.1016/j.matlet.2013.07.070

10.1088/0022-3727/46/4/045308

10.1016/j.compositesa.2016.02.002

10.1021/nn400726g

10.1109/EIC.2009.5166378

10.1002/pc.20805

10.1088/0022-3727/44/39/395401

10.1016/S1359-835X(01)00023-9

10.1002/pc.22366

10.1016/j.compositesa.2010.05.002

10.1038/srep06556

10.1109/TDEI.2016.7736836

10.1016/j.apsusc.2013.12.081

10.1016/j.polymer.2011.12.040

Wang X, 2013, Boron nitride nanosheets: novel syntheses and applications in polymeric composites, J Phys Conf Ser, 471

WangZ HuangJ ChenS YangM LiuJ XieQ ChengY. Epoxy/h‐BN composites based on oriented boron nitride platelets with high thermally conductivity for electronic encapsulation. Integrated Power Packaging 2017 International Workshop on Integrated Power Packaging (IWIPP) 2017; Delft pp. 1–4. doi:https://doi.org/10.1109/IWIPP.2017.7936751.

10.1021/am400871s

10.1021/jp903159s

10.1021/am507416y

10.1039/C6RA00358C

10.1177/0021998313513205

10.1016/j.compositesb.2013.03.002

10.1007/s13233-012-0122-2

10.1080/15685551.2015.1092014

10.1163/092430411X579104

10.1002/app.35089

10.1002/pen.21336

10.3144/expresspolymlett.2013.51

10.1063/1.4800698

10.1007/s10853-011-5325-y

10.1016/j.compscitech.2015.04.007

10.1088/1757-899X/87/1/012088