Rod-like nitrogen-doped carbon hollow shells for enhanced capacitive deionization
Tài liệu tham khảo
Porada, 2013, Prog. Mater Sci., 58, 1388, 10.1016/j.pmatsci.2013.03.005
Alkhudhiri, 2012, Desalination, 287, 2, 10.1016/j.desal.2011.08.027
Camacho, 2013, Water, 5, 94, 10.3390/w5010094
Sadrzadeh, 2008, Desalination, 221, 440, 10.1016/j.desal.2007.01.103
Arras, 2009, Desalination, 235, 170, 10.1016/j.desal.2008.02.009
Lee, 2011, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036
Mossad, 2013, Desalination, 308, 154, 10.1016/j.desal.2012.05.021
P. Biesheuvel, arXiv preprint arXiv:1509.06354, 2015.
Zhao, 2009, J. Phys. Chem. Lett., 1, 205, 10.1021/jz900154h
Biesheuvel, 2009, J. Phys. Chem. C, 113, 5636, 10.1021/jp809644s
Biesheuvel, 2011, J. Colloid Interface Sci., 360, 239, 10.1016/j.jcis.2011.04.049
Chen, 2014, Chem. Eng. J., 252, 30, 10.1016/j.cej.2014.04.099
Kim, 2017, Carbon, 122, 329, 10.1016/j.carbon.2017.06.077
Li, 2016, RSC Adv., 6, 11967, 10.1039/C5RA23151E
Liu, 2014, Inorg. Chem. Front., 1, 249, 10.1039/c3qi00102d
Ryoo, 2003, Water Res., 37, 1527, 10.1016/S0043-1354(02)00531-6
Zhang, 2006, Mater. Lett., 60, 360, 10.1016/j.matlet.2005.08.052
Zhang, 2012, Nanoscale, 4, 5440, 10.1039/c2nr31154b
Zou, 2008, Desalination, 225, 329, 10.1016/j.desal.2007.07.014
Jeon, 2013, Energy Environ. Sci., 6, 1471, 10.1039/c3ee24443a
Gao, 2015, Energy Environ. Sci., 8, 897, 10.1039/C4EE03172E
Doornbusch, 2016, J. Mater. Chem. A, 4, 3642, 10.1039/C5TA10316A
Foo, 2009, J. Hazardous Mater., 170, 552, 10.1016/j.jhazmat.2009.05.057
Zhang, 2006, Mater. Chem. Phys., 97, 415, 10.1016/j.matchemphys.2005.08.036
Fang, 2011, J. Mater. Chem., 21, 8742, 10.1039/c1jm10113g
Jung, 2007, Desalination, 216, 377, 10.1016/j.desal.2006.11.023
Shi, 2016, Sci. Rep., 6
Wu, 2013, Langmuir, 29, 15174, 10.1021/la404134x
Saleh, 2008, Environ. Sci. Technol., 42, 7963, 10.1021/es801251c
Zheng, 2014, Nat. Commun., 5, 5261, 10.1038/ncomms6261
Li, 2015, Angew. Chem. Int. Ed., 54, 12886, 10.1002/anie.201506972
Zhang, 2017, J. Mater. Chemi. B
Schaefer, 2010, Angew. Chem. Int. Ed., 49, 7045, 10.1002/anie.201003213
Kim, 2015, J. Phys. Chem. C, 119, 28512, 10.1021/acs.jpcc.5b10552
Li, 2017, ACS Sustainable Chem. Eng.
Liu, 2015, Electrochim. Acta, 158, 403, 10.1016/j.electacta.2015.01.179
Leong, 2016, RSC Adv., 6, 53542, 10.1039/C6RA06489B
Liu, 2015, Electrochim. Acta, 151, 489, 10.1016/j.electacta.2014.11.086
Du, 2017, ACS Nano, 11, 8628, 10.1021/acsnano.7b03830
Hu, 2017, Chem. Commun., 53, 857, 10.1039/C6CC09211J
Wang, 2014, Dalton Trans., 43, 1846, 10.1039/C3DT51959G
Yan, 2013, Sci. Rep., 3
Panchakarla, 2009, Adv. Mater., 21, 4726
Bhattacharjya, 2013, Langmuir, 30, 318, 10.1021/la403366e
Zhang, 2011, Adv. Mater., 23, 1020, 10.1002/adma.201004110
Higgins, 2011, Electrochim. Acta, 56, 1570, 10.1016/j.electacta.2010.11.003
Maldonado, 2006, Carbon, 44, 1429, 10.1016/j.carbon.2005.11.027
Lee, 2010, Nat. Nanotechnol., 5, 531, 10.1038/nnano.2010.116
Wu, 2011, ACS Nano, 5, 5463, 10.1021/nn2006249
Gu, 2014, RSC Adv., 4, 63189, 10.1039/C4RA11468J
Long, 2010, Langmuir, 26, 16096, 10.1021/la102425a
Wang, 2013, J. Mater. Chem. A, 1, 11778, 10.1039/c3ta11926b
Liu, 2016, ACS Appl. Mater. Interfaces, 8, 7194, 10.1021/acsami.6b02404
Liu, 2015, ACS applied materials & interfaces, 7, 18609, 10.1021/acsami.5b05035
Chao, 2015, J. Mater. Chem. A, 3, 12730, 10.1039/C5TA01036E
Jiang, 2012, Adv. Mater., 24, 4197, 10.1002/adma.201104942
Suss, 2015, Energy Environ. Sci., 8, 2296, 10.1039/C5EE00519A
Shen, 2016
Ding, 2017, J. Mater. Chem. A
Zhu, 2013, Nanoscale, 5, 780, 10.1039/C2NR32758A
Mossad, 2013, Chem. Eng. J., 223, 704, 10.1016/j.cej.2013.03.058
Park, 2014, J. Electroanal. Chem., 732, 66, 10.1016/j.jelechem.2014.08.020
Wang, 2014, J. Mater. Chem. A, 2, 4739, 10.1039/C3TA15152B
Wen, 2013, J. Mater. Chem. A, 1, 12334, 10.1039/c3ta12683h
Li, 2016, Sep. Purif. Technol., 165, 190, 10.1016/j.seppur.2016.04.007