Rock-salt and helix structures of silver iodides under ambient conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Guo, 2006, A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide, Atmos Res, 79, 183, 10.1016/j.atmosres.2005.04.005
Cong, 2006, Development of Silica Coated Silver Iodide Nano-Particles in Different Sizes for Novel X-Ray Contrast Media, 10.1142/9781860948800_0033
Kvist, 1966, Thermoelectric power of solid and molten copper and silver iodide, Z Naturforsch, A21, 184, 10.1515/zna-1966-1-233
Kannan, 2017, Silver Iodide Nanoparticles as an Antibiofilm Agent: A Case Study on Gram-Negative Biofilm-Forming Bacteria
Han, 2014, Pressure induced ionic-superionic transition in silver iodide at ambient temperature, J Chem Phys, 140, 044708, 10.1063/1.4862824
Yamamoto, 2017, The room-temperature superionic conductivity of silver iodide nanoparticles under pressure, J Am Chem Soc, 139, 1392, 10.1021/jacs.6b11379
Piermarini, 1962, A diamond cell for X-ray diffraction studies at high pressures, J Res Natl Bur Stans A, 66, 325, 10.6028/jres.066A.033
Sowa, 2007, Orientation relations between four phases of AgI, Z Kristall, 222, 89, 10.1524/zkri.2007.222.2.89
Catti, 2005, Kinetic mechanisms of the pressure-driven phase transitions of AgI, Phys Rev B, 72, 064105, 10.1103/PhysRevB.72.064105
Hull, 1999, Pressure-induced phase transitions in AgCl, AgBr, and AgI, Phys Rev B, 59, 750, 10.1103/PhysRevB.59.750
Binner, 2006, Hysteresis in the β–α phase transition in silver iodide, J Therm Anal Calorim, 84, 409, 10.1007/s10973-005-7154-1
Guo, 2005, AgI nanoplates with mesoscopic superionic conductivity at room temperature, Adv Mater, 17, 2815, 10.1002/adma.200501215
Makiura, 2009, Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles, Nat Mater, 8, 476, 10.1038/nmat2449
Yamasaki, 2013, Preparation of sub-10 nm AgI nanoparticles and a study on their phase transition temperature, Chem Asian J, 8, 73, 10.1002/asia.201200790
Zhang, 2015, Size-controlled AgI/Ag heteronanowires in highly ordered alumina membranes: superionic phase stabilization and conductivity, Nano Lett, 15, 5161, 10.1021/acs.nanolett.5b01388
Zhang, 2017, Assembly of ring-shaped phosphorus within carbon nanotube nanoreactors, Angew Chem Int Ed, 56, 1850, 10.1002/anie.201611740
Zhang, 2013, Evidence of diamond nanowires formed inside carbon nanotubes from diamantane dicarboxylic acid, Angew Chem Int Ed, 52, 3717, 10.1002/anie.201209192
Kitaura, 2009, High-yield synthesis of ultrathin metal nanowires in carbon nanotubes, Angew Chem Int Ed, 48, 8298, 10.1002/anie.200902615
Wang, 2010, Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes, J Am Chem Soc, 132, 13840, 10.1021/ja1058026
Shi, 2016, Confined linear carbon chains as a route to bulk carbyne, Nat Mater, 15, 634, 10.1038/nmat4617
Zhang, 2012, Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes, ACS Nano, 6, 8674, 10.1021/nn303461q
Zhao, 2003, Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube, Phys Rev Lett, 90, 187401, 10.1103/PhysRevLett.90.187401
Chuvilin, 2011, Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube, Nat Mater, 10, 687, 10.1038/nmat3082
Zhang, 2013, Chirally selective growth and extraction of single-wall carbon nanotubes via fullerene nano-peapods, RSC Adv, 3, 16954, 10.1039/c3ra43133a
Zhang, 2011, Preferential synthesis and isolation of (6,5) single-wall nanotubes from one-dimensional C60 coalescence, Nanoscale, 3, 4190, 10.1039/c1nr10602c
Li, 2015, Carbon nanotube hybrids with MoS2 and WS2 synthesized with control of crystal structure and morphology, Carbon, 85, 168, 10.1016/j.carbon.2014.12.090
Ando, 2000, Mass production of single-wall carbon nanotubes by the arc plasma jet method, Chem Phys Lett, 323, 580, 10.1016/S0009-2614(00)00556-X
Hirahara, 2000, One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes, Phys Rev Lett, 85, 5384, 10.1103/PhysRevLett.85.5384
Kharlamova, 2015, Raman spectroscopy study of the doping effect of the encapsulated iron, cobalt, and nickel bromides on single-walled carbon nanotubes, J Spectrosc, 2015, 1, 10.1155/2015/653848
Piscanec, 2007, Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects, Phys Rev B, 75, 035427, 10.1103/PhysRevB.75.035427
Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput Mater Sci, 36, 354, 10.1016/j.commatsci.2005.04.010
Sanville, 2007, Improved grid-based algorithm for Bader charge allocation, J Comput Chem, 28, 899, 10.1002/jcc.20575
Tang, 2009, A grid-based Bader analysis algorithm without lattice bias, J Phys: Condens Matter, 21, 084204
Yu, 2011, Accurate and efficient algorithm for Bader charge integration, J Chem Phys, 134, 064111, 10.1063/1.3553716
Gotlib, 2011, Computer simulation of ionic transport in silver iodide within carbon nanotubes, Solid State Ion, 188, 6, 10.1016/j.ssi.2010.11.020
Parrinello, 1983, Structural transitions in superionic conductors, Phys Rev Lett, 50, 1073, 10.1103/PhysRevLett.50.1073
Baldoni, 2007, Formation, structure, and polymorphism of novel lowest-dimensional AgI nanoaggregates by encapsulation in carbon nanotubes, Small, 3, 1730, 10.1002/smll.200700296
Tersoff, 1989, Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys Rev B, 39, 5566, 10.1103/PhysRevB.39.5566
Matsunaga, 2018, Structure and transport properties of AgI–AgCl–CsCl glasses: molecular dynamics study, Ionics, 24, 1371, 10.1007/s11581-017-2302-8
Toby, 1992, Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials, Acta Crystallogr A, 48, 336, 10.1107/S0108767391011327
Ya Gamarnik, 1993, The physical nature of changes of lattice parameters in small particles, Phys Status Solidi B, 178, 59, 10.1002/pssb.2221780105
Cava, 1977, Single-crystal neutron-diffraction study of AgI between 23° and 300°C, Solid State Commun, 24, 411, 10.1016/0038-1098(77)91306-0
Perdew, 1996, Generalized gradient approximation made simple, Phys Rev Lett, 77, 3865, 10.1103/PhysRevLett.77.3865
Fujimori, 2013, Formation and properties of selenium double-helices inside double-wall carbon nanotubes: experiment and theory, ACS Nano, 7, 5607, 10.1021/nn4019703
Eliseev, 2010, Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes, Carbon, 48, 2708, 10.1016/j.carbon.2010.02.037
Urita, 2011, Confinement in carbon nanospace-induced production of KI nanocrystals of jigh-pressure phase, J Am Chem Soc, 133, 10344, 10.1021/ja202565r
Boi, 2017, New insights on the magnetic properties of ferromagnetic FePd3 single-crystals encapsulated inside carbon nanomaterials, Mater Res Express, 4, 035021, 10.1088/2053-1591/aa62e7
Guo, 2006, Structural transformation of partially confined copper nanowires inside defected carbon nanotubes, Nanotechnology, 17, 4726, 10.1088/0957-4484/17/18/033
Sun, 2006, Carbon nanotubes as high-pressure cylinders and nanoextruders, Science, 312, 1199, 10.1126/science.1124594
Karmakar, 2006, Pressure-induced phase transitions in cobalt-filled multiwalled carbon nanotubes, Phys Rev B, 73, 184119, 10.1103/PhysRevB.73.184119
Guo, 2006, Structural transformation of partially confined copper nanowires inside defected carbon nanotubes, Nanotechnology, 17, 4726, 10.1088/0957-4484/17/18/033
Long, 2012, Under pressure: quasi-high pressure effects in nanopores, Microporous Mesoporous Mater, 154, 19, 10.1016/j.micromeso.2011.07.017