Robustness of trajectories with finite time extent

Automatica - Tập 38 - Trang 1485-1497 - 2002
Ulf Jönsson1
1Division of Optimization and Systems Theory, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Tài liệu tham khảo

Bertsekas, D. P. (1995). Nonlinear programming. Athena Scientific. Belmont, Massachusetts. Botchkarev, O., & Tripakis, S. (2000). Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In N. Lynch, & B. Krogh (Eds.), Hybrid systems: Computation and control (pp. 73–88). Lecture Notes in Computer Science, Vol. 1790. Berlin: Springer. Boyd, 1991 Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM. Branicky, M. (1995). Studies in hybrid systems: Modeling, analysis, and control. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA. Clarke, F. H. (1990). Optimization and nonsmooth analysis. Classics in applied mathematics. SIAM: Philadelphia, MA. Frazzoli, E., Dahleh, M. A., & Feron, E. (1999). Robust hybrid control for autonomous vehicles motion planning. Technical Report LIDS-P-2468, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA. Goffin, J. -L., & Vial, J. -P. (1999). Convex nondifferentiable optimization: A survey focused on the analytical center cutting plane method. Technical Report, Department of Management Studies, University of Geneva, Switzerland. Available: http://www.crt.umontreal.ca/jlg/. Kao, 2001, A cutting plane algorithm for robustness analysis of periodic systems, IEEE Transactions on Automatic Control, 46, 579, 10.1109/9.917659 Kao, C. -Y., Megretski, A., & Jönsson., U. (2002). Oracle-based cutting plane algorithms for IQC feasibility and optimization problems. Technical Report LIDS-P-2539, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA. Krogh, B., & Chutinan, A. (1999). In P.M. Frank (Ed.), Advances in control (Highlights of ECC’99). Hybrid systems: Modeling and supervisory control (pp. 227–246). Berlin: Springer. Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In N. Lynch, & B. Krogh (Eds.), Hybrid systems: Computation and control (pp. 202–214). Lecture Notes in Computer Science, Vol. 1790. Berlin, Heidelberg: Springer. Lemaréchal, C. (1989). Nondifferentiable optimization. In G. Nemhauser, A. R. Kan, & M. Todd (Eds.), Handbook in OR MS (Chapter VII) (pp. 529–572). Vol. 1. Amsterdam: North-Holland. Lygeros, J., Tomlin, C., & Sastry, S. (1999). Controllers for reachability specifications of hybrid systems. Automatica, 349–370. Malmborg, J., Bernhardsson, B., & Åström, K. J. (1996). A stabilizing switching scheme for multi-controller systems. In Proceedings of the 1996 triennal IFAC world congress, IFAC96, San Fransicso, CA, USA, Vol. F. Matveev, 1997, Nonconvex problems of global optimization: Linear-quadratic control problems with quadratic constraints, Dynamics and Control, 7, 99, 10.1023/A:1008236815189 Megretski, A. (1993). Power distribution approach in robust control. In Proceedings of the IFAC congress. Sydney, Australia. Megretski, A., Kao, C., Jönsson, U., & Rantzer, A. (1997). A guide to IQC-beta: Software for robustness analysis. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA. Megretski, 1997, System analysis via integral quadratic constraints, IEEE Transactions on Automatic Control, 42, 819, 10.1109/9.587335 Moré, 1983, Computing a trust region step, SIAM Journal of Scientific Statistical Computation, 4, 553, 10.1137/0904038 Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer Series in Operations Research. Berlin: Springer. Savkin, 1995, An uncertainty averaging approach to optimal guaranteed cost control of uncertain systems with structured uncertainty, Automatica, 31, 1649, 10.1016/0005-1098(95)00080-G Savkin, 1996, Model validation for robust control of uncertain systems with an integral quadratic constraint, Automatica, 32, 603, 10.1016/0005-1098(95)00167-0 Savkin, 1996, Robust state estimation for uncertain systems with averaged integral quadratic constraints, International Journal of Control, 64, 923, 10.1080/00207179608921665 Sorensen, 1982, Newton's method with a model trust region modification, SIAM Journal of Numerical Analysis, 19, 409, 10.1137/0719026 Tavernini, 1987, Differential automata and their discrete simulators, Nonlinear Analysis, Theory, Methods, and Applications, 11, 665, 10.1016/0362-546X(87)90034-4 Tierno, 1997, Numerically efficient robustness analysis of trajectory tracking for nonlinear systems, Journal of Guidance, Control, and Dynamics, 20, 640, 10.2514/2.4121 Yakubovich, 1967, Frequency conditions for the absolute stability of control systems with several nonlinear or linear nonstationary blocks, Avtomatika i Telemekhanika, 6, 5 Yakubovich, 1988, Dichotomy and absolute stability of nonlinear systems with periodically nonstationary linear part, Systems and Control Letters, 11, 221, 10.1016/0167-6911(88)90062-X Yakubovich, V. A. (2000). Necessity in quadratic criterion for absolute stability (Special issue: George Zames Commemorative issue). International Journal of Robust and Nonlinear Control, 10(11–12), 889–907.