Robust virtual power plant investment planning

Sustainable Energy, Grids and Networks - Tập 35 - Trang 101105 - 2023
Ana Baringo1, Luis Baringo2, José M. Arroyo2
1Institute for Research in Technology, ICAI, Universidad Pontificia Comillas, Alberto Aguilera, 25, 28015 Madrid, Spain
2Department of Electrical Engineering, Universidad de Castilla–La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain

Tài liệu tham khảo

Morales, 2014 Zhang, 2019, Comprehensive review on structure and operation of virtual power plant in electrical system, IET Gener. Transm. Distrib., 13, 145, 10.1049/iet-gtd.2018.5880 Ullah, 2019, Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources, IET Energy Syst. Integr., 1, 147, 10.1049/iet-esi.2018.0041 Shabanzadeh, 2016, A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant, Appl. Energy, 169, 663, 10.1016/j.apenergy.2016.02.058 Shabanzadeh, 2017, An interactive cooperation model for neighboring virtual power plants, Appl. Energy, 200, 273, 10.1016/j.apenergy.2017.05.066 Bagchi, 2019 Bagchi, 2019, Adequacy assessment of generating systems incorporating storage integrated virtual power plants, IEEE Trans. Smart Grid, 10, 3440, 10.1109/TSG.2018.2827107 Baringo, 2021, Holistic planning of a virtual power plant with a nonconvex operational model: A risk-constrained stochastic approach, Int. J. Electr. Power Energy Syst., 132, 10.1016/j.ijepes.2021.107081 Schwele, 2020, Do unit commitment constraints affect generation expansion planning? A scalable stochastic model, Energy Syst., 11, 247, 10.1007/s12667-018-00321-z Poncelet, 2020, Unit commitment constraints in long-term planning models: Relevance, pitfalls and the role of assumptions on flexibility, Appl. Energy, 258, 10.1016/j.apenergy.2019.113843 Arroyo, 2020, On the use of a convex model for bulk storage in MIP-based power system operation and planning, IEEE Trans. Power Syst., 35, 4964, 10.1109/TPWRS.2020.3020730 Ben-Tal, 2004, Adjustable robust solutions of uncertain linear programs, Math. Program., 99, 351, 10.1007/s10107-003-0454-y Ruiz, 2015, Robust transmission expansion planning, Eur. J. Oper. Res., 242, 390, 10.1016/j.ejor.2014.10.030 Dehghan, 2014, Two-stage robust generation expansion planning: A mixed integer linear programming model, IEEE Trans. Power Syst., 29, 584, 10.1109/TPWRS.2013.2287457 Amjady, 2018, Adaptive robust expansion planning for a distribution network with DERs, IEEE Trans. Power Syst., 33, 1698, 10.1109/TPWRS.2017.2741443 Zhao, 2012 Wang, 2017, Robust defense strategy for gas-electric systems against malicious attack, IEEE Trans. Power Syst., 32, 2953, 10.1109/TPWRS.2016.2628877 Cobos, 2018, Robust energy and reserve scheduling considering bulk energy storage units and wind uncertainty, IEEE Trans. Power Syst., 33, 5206, 10.1109/TPWRS.2018.2792140 Cobos, 2019, Robust energy and reserve scheduling under wind uncertainty considering fast-acting generators, IEEE Trans. Sustain. Energy, 10, 2142, 10.1109/TSTE.2018.2880919 Zeng, 2013, Solving two-stage robust optimization problems using a column-and-constraint generation method, Oper. Res. Lett., 41, 457, 10.1016/j.orl.2013.05.003 Moreno, 2017, Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 375 García-Cerezo, 2020, Representative days for expansion decisions in power systems, Energies, 13, 335, 10.3390/en13020335 Bertsimas, 2004, The price of robustness, Oper. Res., 52, 35, 10.1287/opre.1030.0065 Jiang, 2014, Two-stage network constrained robust unit commitment problem, Eur. J. Oper. Res., 234, 751, 10.1016/j.ejor.2013.09.028 Floudas, 1995 Baringo, 2023 IBM ILOG CPLEX, 2023 Rosenthal, 2012