Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cawley, 2003, Practical long range guided wave inspection-applications to pipes and rail’, Mater. Eval., 61, 66
Giurgiutiu, 2003, Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring, Smart Struct. Mater., 5056, 111, 10.1117/12.483492
Ihn, 2008, Pitch–catch active sensing methods in structural health monitoring for aircraft structures, Struct. Health Monit., 7, 5, 10.1177/1475921707081979
Graff, 1975
Michaels, 2005, Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals, Ultrason., Ferroelectr. Freq. Control, IEEE Trans., 52, 1769, 10.1109/TUFFC.2005.1561631
Gao, 2005, Guided wave tomography on an aircraft wing with leave in place sensors, Rev. Prog. Quant. Nondestruct. Eval., 760, 1788, 10.1063/1.1916887
Sohn, 2007, Effects of environmental and operational variability on structural health monitoring, Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., 365, 539, 10.1098/rsta.2006.1935
C. Liu, J.B. Harley, N. O’Donoughue, Y. Ying, M.H. Altschul, J.H. Garrett Jr, J.M. Moura, I.J. Oppenheim, L. Soibelman, Ultrasonic monitoring of a pipe under operating conditions, SPIE Smart Struct. Mater.+Nondestruct. Eval. Health Monitor. (2012) p. 83450B.
Konstantinidis, 2006, The temperature stability of guided wave structural health monitoring systems, Smart Mater. Struct., 15, 967, 10.1088/0964-1726/15/4/010
Lu, 2009, Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions, Sens. J., IEEE, 9, 1462, 10.1109/JSEN.2009.2019339
Croxford, 2010, Efficient temperature compensation strategies for guided wave structural health monitoring, Ultrasonics, 50, 517, 10.1016/j.ultras.2009.11.002
Clarke, 2010, Guided wave health monitoring of complex structures by sparse array systems: influence of temperature changes on performance, J. Sound Vib., 329, 2306, 10.1016/j.jsv.2009.01.052
Harley, 2012, Scale transform signal processing for optimal ultrasonic temperature compensation, Ultrason., Ferroelectr. Freq. Control, IEEE Trans., 59, 2226, 10.1109/TUFFC.2012.2448
Putkis, 2013, Continuous baseline growth and monitoring for guided wave SHM, Smart Mater. Struct., 22, 055029, 10.1088/0964-1726/22/5/055029
Ying, 2012, Damage detection in pipes under changing environmental conditions using embedded piezoelectric transducers and pattern recognition techniques, J. Pipeline Syst. Eng. Pract.
Haynes, 2013, Statistically-based damage detection in geometrically-complex structures using ultrasonic interrogation, Struct. Health Monitor., 12, 141, 10.1177/1475921712466756
Bishop, 1994, Neural networks and their applications, Rev. Sci. Instrum., 65, 1803, 10.1063/1.1144830
B. Scholkopft, K.-R. Mullert, Fisher discriminant analysis with kernels, 1999.
Gerbrands, 1981, On the relationships between SVD, KLT and PCA, Pattern Recogn., 14, 375, 10.1016/0031-3203(81)90082-0
M.A. Turk, A.P. Pentland, Face recognition using eigenfaces, in: Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer Society Conference on, 1991, pp. 586–591.
K. Konstantinides, G.S. Yovanof, Application of SVD based spatial filtering to video sequences, in: 1995 International Conference on Acoustics, Speech, and Signal Processing, 1995. ICASSP-95, 1995, vol. 4, pp. 2193–2196.
Wei, 2001, ECG data compression using truncated singular value decomposition, Inform. Technol. Biomed., IEEE Trans., 5, 290, 10.1109/4233.966104
Vanlanduit, 2005, A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties, J. Sound Vib., 284, 1033, 10.1016/j.jsv.2004.07.016
Ruotolo, 1999, Using SVD to detect damage in structures with different operational conditions, J. Sound Vib., 226, 425, 10.1006/jsvi.1999.2305
Mujica, 2010, Q-statistic and T2-statistic PCA-based measures for damage assessment in structures, Struct. Health Monit.
Tibaduiza, 2013, Damage classification in structural health monitoring using principal component analysis and self-organizing maps, Struct. Control Health Monit., 20, 1303, 10.1002/stc.1540
C. Liu, J. B. Harley, N. O’Donoughue, Y. Ying, M.H. Altschul, M. Berges, J.H. Garrett, D.W. Greve, J.M.F. Moura, I.J. Oppenheim, L. Soibelman, Robust change detection in highly dynamic guided wave signals with singular value decomposition, in: Ultrasonics Symposium (IUS), 2012 IEEE International, 2012, pp. 483–486.
Comon, 1990, Tracking a few extreme singular values and vectors in signal processing, Proc. IEEE, 78, 1327, 10.1109/5.58320
Badeau, 2004, Sliding window adaptive SVD algorithms, Signal Process., IEEE Trans., 52, 1, 10.1109/TSP.2003.820069
Michaels, 2008, Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors, Smart Mater. Struct., 17, 035035, 10.1088/0964-1726/17/3/035035
Liu, 2014, A robust baseline removal method for guided wave damage localization, SPIE Smart Struct. Mater.+Nondestruct. Eval. Health Monit.
Bradley, 1997, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145, 10.1016/S0031-3203(96)00142-2
C. Liu, J.B. Harley, Y. Ying, M.H. Altschul, M. Bergés, J.H. Garrett, Jr., D.W. Greve, J.M.F. Moura, I.J. Oppenheim, L. Soibelman, Ultrasonic monitoring of a pressurized pipe in operation, in: Structures Congress 2013, American Society of Civil Engineers, 2013, pp. 1903–1913.
C. Liu, J.B. Harley, D.W. Greve, M. Bergés, I.J. Oppenheim, Identifying pipe degradation in a highly dynamic environment using singular value decomposition, in: Proc. 9th International Workshop on Structural Health Monitoring, pp. 815–822.