Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barmish, 1985, Necessary and sufficient conditions for quadratic stabilizability of an uncertain system, J. Optim. Theory Appl., 46, 399, 10.1007/BF00939145
Becker, 1993, A single quadratic Lyapunov function approach to the stabilization and control of parametrically dependent systems
Becker, 1993, Control of parametrically-dependent linear systems: a single quadratic Lyapunov approach
Boyd, 1993, Method of centers for minimizing generalized eigenvalues, Linear Algebra and its Applications, 10.1016/0024-3795(93)90465-Z
Brockett, 1970
Davis, 1982, Norm preserving dilations and their applications to optimal error bounds, SIAM J. Numer. Anal., 19, 445, 10.1137/0719029
Desoer, 1975
Doyle, 1989, State-space solutions to standard H2 and H∞ control problems, IEEE Trans. Automat. Control, 10.1109/9.29425
Fan, 1992, A quadratically convergent algorithm on minimizing the largest eigenvalue of a symmetric matrix, Linear Algebra and its applications
Gahinet, 1992, A convex parametrization of H∞ suboptimal controllers, 937
Gahinet, 1992, State-space H∞ control: a complete solution via convex Riccati inequalities, Special Issue on H∞ Control of Int. J. Robust, Nonlinear Control
Hyde, 1993, The application of scheduled H∞ controllers to a VSTOL aircraft, IEEE Trans. Automat. Control, AC-38, 10.1109/9.231458
Jarre, 1991, An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices
Kamen, 1984, On the control of linear systems whose coefficients are functions of parameters, IEEE Trans. Automat. Control, 29, 10.1109/TAC.1984.1103374
Khargonekar, 1988, H∞-optimal control with state-feedback, IEEE Trans. Automat. Control, 33, 786, 10.1109/9.1301
Khargonekar, 1990, Robust stabilization of uncertain linear systems: quadratic stability and H∞ control theory, IEEE Trans. Automat. Control, 35, 356, 10.1109/9.50357
Khargonekar, 1982, On the relation between stable matrix fraction factorizations and regulable realizations of linear systems over rings, IEEE Trans. Automat. Control, AC-27, 627, 10.1109/TAC.1982.1102958
Leitmann, 1979, Guaranteed asymptotic stability for some linear systems with bounded uncertainties, ASME J. Dyn. Systems, Measurement Control, 101
Nekooie, 1993, A second-order interior point method for solving linear matrix inequality problems, SIAM J. Control Optim.
Nesterov, 1992, Interior point polynomial methods in convex programming: theory and applications
Packard, 1993, Gain scheduling via linear fractional transformations, Systems Control Lett.
Packard, 1992, Optimal, constant I/O similarity scaling for full-information and state-feedback control problems, Systems Control Lett., 19, 271, 10.1016/0167-6911(92)90065-Z
Peterson, 1987, Disturbance attenuation and H∞ optimization: a design method based on the algebraic Riccati equation, IEEE Trans. Automat. Control, 32, 427, 10.1109/TAC.1987.1104609
Redheffer, 1960, On a certain linear fractional transformation, J. Math. Phys., 39, 269, 10.1002/sapm1960391269
Rugh, 1991, Analytical framework for gain scheduling, IEEE Control Systems Magazine, 11, 74, 10.1109/37.103361
Safonov, 1989, Simplifying the H∞ theory via loop shifting, matrix pencil, and descriptor concepts, Internat. J. Control, 50, 2467, 10.1080/00207178908953510
Sampei, 1990, An algebraic approach to H∞ output feedback control problems, Systems Control Lett., 14, 13, 10.1016/0167-6911(90)90075-6
Scherer, 1992, H∞ optimization without assumptions on finite or infinite zeros, SIAM J. Control Optim., 30, 143, 10.1137/0330010
Shahruz, 1992, Design of controllers for linear parameter varying systems by the gain scheduling technique, J. Math. Anal. Appl., 168, 195, 10.1016/0022-247X(92)90199-N
Shamma, 1992, Gain scheduling: potential hazards and possible remedies, IEEE Control Systems Magazine, 12, 101, 10.1109/37.165527
Shamma, 1990, Analysis of nonlinear gain scheduled control systems, IEEE Trans. Automat. Control, AC-35, 898, 10.1109/9.58498
Shamma, 1991, Guaranteed properties of gain scheduled control of linear parameter-varying plants, Automatica, 27, 559, 10.1016/0005-1098(91)90116-J
L. Vandenberghe and S. Boyd, Primal-dual potential reduction method for problems involving matrix inequalities, Technical Report, Informations Systems Laboratory, Electrical Engineering Dept., Stanford University, Stanford, CA.
Wang, 1987, Parametrized linear systems and linearization families for nonlinear systems, IEEE Trans. Circuits and Systems, 34, 650, 10.1109/TCS.1987.1086191
Willems, 1971, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Trans. Automat. Control, AC-16, 10.1109/TAC.1971.1099831