Robust knockdown factors for the design of cylindrical shells under axial compression: Analysis and modeling of stiffened and unstiffened cylinders

Thin-Walled Structures - Tập 127 - Trang 629-645 - 2018
H.N.R. Wagner1, C. Hühne1, S. Niemann1, Kuo Tian2, Bo Wang2, Peng Hao2
1Institute for Composite Structures and Adaptive Systems, German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig, Germany
2Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Tài liệu tham khảo

Chinaspacereport, 〈https://chinaspacereport.com/launch-vehicles/cz5/#prettyPhoto〉, [Online]. Wang, 2016, Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression, Thin-Walled Struct., 109, 13, 10.1016/j.tws.2016.09.008 B. Wang, S.Zhu, P. Hao, X. Bi, K. Du, B. Chen, X. Ma and Y. Chao, Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation, Int. J. Solids. Struct. Vol. 130–131, January 2018, p. 232–247. Wagner, 2018, Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis, Int. J. Mech. Sci., 135, 410, 10.1016/j.ijmecsci.2017.11.020 W.T. Koiter, The Stability of Elastic Equilibrium [PhD thesis], 1945 [in Dutch], TH Delft, Ed., Englisch Translation NASA TTF-10; 1967, p. 1–833. Arbocz, 1982, The imperfections data bank, a means to obtain realistic buckling loads, Ramm E. Buckling Shells, 10.1007/978-3-642-49334-8_19 M. Hilburger, M. Nemeth, J.J. Starnes, Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures, NASA/TM-2004-212659, 2004. Eßlinger, 1970, Hochgeschwindigkeitsaufnahmen vom Beulvorgang dünnwandiger, axialbelasteter Zylinder, Der Stahlbau, 39, 73 Khakimova, 2014, The single perturbation load approach applied to imperfection sensitive conical composite structures, Thin-Walled Struct., 84, 369, 10.1016/j.tws.2014.07.005 Khakimova, 2016, Buckling of axially compressed CFRP truncated cones: experimental and numerical investigation, Compos. Struct., 146, 232, 10.1016/j.compstruct.2016.02.023 Evkin, 2017, Energy barrier as a criterion for stability estimation of spherical shell under uniform external pressure, Int. J. Solids Struct., 14, 10.1016/j.ijsolstr.2017.04.026 Kröplin, 1985, An energy perturbation applied to nonlinear structural analysis, Comp. Meth. Appl. Mech. Eng., 52, 885, 10.1016/0045-7825(85)90019-2 C. Hühne, R. Zimmermann, R. Rolfes, B. Geier, Sensitivities to geometrical and loading imperfections on buckling of composite cylindrical shells, in: Proceedings of European Conference on Spacecraft, 2002. Hühne, 2001, Loading imperfections – experiments and computations, Eur. Colloq., 424 Khakimova, 2017, Buckling of axially compressed CFRP cylinders with and without additional lateral load: experimental and numerical investigation, Thin-Walled Struct., 119, 178, 10.1016/j.tws.2017.06.002 O. G. Ricardo, A report on three series of experiments and the description of a simplified model of the thin wall cylinder and cone buckling mechanism, NASA Technical Report, Brasil, 1962. Khakimova, 2016, Buckling of axially compressed CFRP truncated cones with additional lateral load: experimental and numerical investigation, Compos. Struct., 157, 436, 10.1016/j.compstruct.2016.08.011 Lancaster, 2000, Paradoxical buckling behaviour of a thin cylindrical shell, Int. J. Mech. Sci., 42, 843, 10.1016/S0020-7403(99)00030-2 Evkin, 1978, Buckling of axially compressed cylindrical shells under local quasi-statical loads action, Mosc.: Mech. Solids, 11, 24 Castro, 2012, Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors, Int. J. Thin-Walled Struct., 72, 76, 10.1016/j.tws.2013.06.016 Zia, 2017, Effect of asymmetric meshing on the buckling behavior of composite shells under axial compression, Int. J. Comput. Methods Eng. Sci. Mech., 18, 47, 10.1080/15502287.2016.1276348 Tahir, 2015, Buckling of thin cylindrical shells under axial compression, 230 Tahir, 2017, Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression, Eng. Struct., 152, 843, 10.1016/j.engstruct.2017.09.016 J.M.T. Thompson, J. Sieber, Shock-sensitivity in shell-like structures: with simulations of spherical shell buckling, Int,. J. Bifurcation & Chaos, 28/9/2015, 2015. Skukis, 2017, Experimental test for estimation of buckling load on unstiffened cylindrical shells by vibration correlation technique, Procedia Eng., 172, 1023, 10.1016/j.proeng.2017.02.154 E. Skukis, K. Kalnins, O. Ozolins, Application of vibration correlation technique for open hole cylinders, nonlinear dynamics–2016 (ND-KhPI2016) , in: Proceedings of the 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, pp. 377–383, 2016. E. Skukis, O. Ozolins, J. Andersons, K. Kalnis, M. Arbelo, Applicability of the Vibration Correlation Technique for Estimation of the Buckling Load in Axial Compression of Cylindrical Isotropic Shells with and without Circular Cutouts. Hindawi, Shock and Vibration, Volume 2017, Article ID 2983747, 14 pages. Winterstetter, 2002, Stability of circular cylindrical steel shells under combined loading, Thin-Walled Struct., 40, 893, 10.1016/S0263-8231(02)00006-X Deml, 1997, Direct evaluation of the ‘worst’ imperfection shape in shell buckling, Comput. Methods Appl. Mech., 149, 201, 10.1016/S0045-7825(97)00055-8 Horak, 2006, Cylinder buckling: the mountain pass as an organizing center, SIAM J. Appl. Math., 66, 1793, 10.1137/050635778 Croll, 1981, Explicit lower bounds for the buckling of axially loaded cylinders, Int. J. Mech. Sci., 23, 333, 10.1016/0020-7403(81)90063-1 Muggeridge, 1969, Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression, AIAA J., 7, 2127, 10.2514/3.5568 C. Hühne, R. Rolfes, J. Teßmer, A new approach for robust design of composite cylindrical shells under axial compression, in: Proceedings of the European Conference on Spacecraft Structures, 2005. Elishakoff, 2012, Optimization and antioptimization of buckling load for composite cylindrical shells under uncertainties, AIAA J., 50, 1513, 10.2514/1.J051300 C. Hühne, Robuster Entwurf beulgefährdeter, unversteifter Kreiszylinderschalen aus Faserverbund, (Ph.D.) at Technische Universität Carolo-Wilhelmina zu Braunschweig, 2006. Hühne, 2008, Robust design of composite cylindrical shells under axial compression — simulation and validation, Thin-Walled Struct., 46, 947, 10.1016/j.tws.2008.01.043 Kriegesmann, 2010, Probabilistic design of axially compressed composite cylinders with geometric and loading imperfections, Int. J. Struct. Stab. Dyn., 10, 623, 10.1142/S0219455410003658 Kriegesmann, 2011, Fast probabilistic design procedure for axially compressed composite cylinders, Compos. Struct., 93, 3140 R. Degenhardt, R. Zimmermann, A. Kling D. Wilckens, New Robust Design Guideline for imperfection sensitive composite launcher structures, in: Proceedings of the 3rd CEAS Congress, Venice, Italy, 2011. Abramovich, 2017 R. Degenhardt, S. Castro, M. Arbelo, R. Zimmermann, R. Khakimova and A. Kling, Future structural stability design for composite space and airframe structures. Thin-Walled Struct., 81, 2014, p. 29-38, ISSN 0263–8231, https://doi.org/10.1016/j.tws.2014.02.020. Arbelo, 2014, Numerical characterization of imperfection sensitive composite structures, Compos. Struct., 108, 295, 10.1016/j.compstruct.2013.09.041 Friedrich, 2016, Discrepancy between boundary conditions and load introduction of full-scale build-in and sub-scale experimental shell structures of space launcher vehicles, Thin-Walled Struct., 98, 403, 10.1016/j.tws.2015.10.007 Friedrich, 2015, Comparsion of theoretical approaches to account for geometrical imperfections of unstiffened isotropic thin walled cylindrical shell structures under axial compression, Thin-Walled Struct., 92, 1, 10.1016/j.tws.2015.02.019 Asmolovskiy, 2015, Numerical approaches to stability analysis of cylindrical composite shells based on load imperfections, Eng. Comput., 32, 498, 10.1108/EC-10-2013-0246 Arbelo, 2014, Investigation of buckling behavior of composite shell structures with cutouts, Appl. Compos. Mater., 21, 10.1007/s10443-014-9428-x Meurer, 2016, Probabilistic perturbation load approach for designing axially compressed cylindrical shells, Thin-Walled Struct., 107, 648, 10.1016/j.tws.2016.07.021 Wagner, 2017, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells - development and validation, Compos. Struct., 173, 281, 10.1016/j.compstruct.2017.02.031 Wagner, 2017, Stimulating the realistic worst case buckling scenario of axially compressed cylindrical composite shells, Compos. Struct., 160, 1095, 10.1016/j.compstruct.2016.10.108 H. Wagner, C. Hühne, S. Niemann, L. Weiß, High-fidelity design methods to determine knockdown factors for the buckling load of axially loaded composite cylindrical shells, in: Proceedings of the 11th International Conference Shell Structures - Theory and Applications, (Ssta 2017), October 11-13, 2017, Gdansk, Poland. M.W. Hilburger, W.A.J. Waters, W.T. Haynie, R.P. Thornburgh, Buckling Test Results and Preliminary Test and Analysis Correlation from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA02, NASA/TP-2017-219587, L-20801, NF1676L-26704, 2017. M.W. Hilburger, W.A.J. Waters, W.T. Haynie, Buckling Test Results from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA01. [Test Dates: 19-21 November 2008], NASA/TP-2015-218785, L-20490, NF1676L-20067, 2015. M.W. Hilburger, A.E. Lovejoy, R P. Thornburgh, C. Rankin, Design and analysis of subscale and full-scale buckling-critical cylinders for launch vehicle technology development, AIAA Paper 2012–1865, NF1676L-13285, 2012. M.W. Hilburger, W.T. Haynie, A.E. Lovejoy, M.G. Roberts, J.P. Norris, W.A. Waters, H.M. Herring, Subscale and full-scale testing of buckling-critical launch vehicle shell structures, AIAA Paper 2012–1688, NF1676L-13284. Verduyn, 1982, A testing machine for statiscial analysis of small imperfect shells: part 1. Delft, Netherlands: delft University of Technology, Dep. Aerosp. Eng. Kaiser, 1972, 774 Wagner, 2017, Robust design criterion for axially loaded cylindrical shells – simulation and validation, Thin-Walled Struct., 115, 154, 10.1016/j.tws.2016.12.017 Dassault Systems, ABAQUS 6.13—Software Package, 2013. Wullschleger, 2002, Buckling of geometrically imperfect cylindrical shells - definition of a buckling load, Int. J. Non-Linear Mech., 37, 645, 10.1016/S0020-7462(01)00089-0 Kepple, 2015, Stochastic analysis of imperfections sensitive unstiffened composite cylinder using realistic imperfections models, Compos. Struct., 126, 159, 10.1016/j.compstruct.2015.02.063 R. Degenhardt, A. Bethge, A. Kling, R. Zimmermann, K. Rohwer, Probabilistic approach for improved buckling knock-down factors of CFRP cylindrical shells, in: Proceeding of the 18th Engineering Mechanics Division Conference, 2007. Wagner, 2016, Constant Single-buckle imperfection PRINCiple to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression, Compos. Struct., 139, 120, 10.1016/j.compstruct.2015.11.047 Weingarten, 1965, Elastic stability of thin-walled cylindrical and conical shells under axial compression, AIAA J., 3, 500, 10.2514/3.2893 J.P. Peterson, P. Seide, V.I. Weingarten, Buckling of thin-walled circular cylinders - NASA SP-8007, Technical Report, 1 Aug 1968. Almroth, 1970, Design criteria for axially loaded cylindrical shells, J. Spacecr. Rockets, 7, 714, 10.2514/3.30025 DASt-Richtlinie 013: Beulsicherheitsnachweis für Schalen, Deutscher Ausschuss für Stahlbau, Stahlbauverlag, Köln, 1980. Takano, 2012, Statistical knockdown factors of buckling anisotropic cylinder under axial compression, J. Appl. Mech., 79, 051004, 10.1115/1.4006450 J.M. Rotter, H. Schmidt, Buckling of Steel Shells - European Design Recommendations, 5th Edition, Revised Second Impression, 2013. Błażejewski, 2017, Buckling of externally pressurised spherical shells: experimental results compared with recent design recommendations, ce/Pap.: Spec. Issue.: Eur. 2017, 1, 1010 R. Batista, J. Croll, A design approach for unstiffened cylindrical shells under external pressure, in: Proceedings of the international conference on thin-walled structures, 1979. Croll, 1995, Towards a rationally based elastic-plastic shell buckling design, Thin-Walled Struct., 23, 67, 10.1016/0263-8231(95)00005-X Croll, 1975, Towards simple estimates of shell buckling loads, Der Stahlbau, 1 & 2 E. Sosa, L. Godoy, J. Croll, Computation of lower-bound elastic buckling loads using general-purpose finite element codes, in: Computers & Structures, Volume 84, Issues 29–30, November 2006, pp. 1934–1945. Castro, 2014, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct., 74, 118, 10.1016/j.tws.2013.08.011 Hao, 2014, Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors, Thin-Walled Struct., 82, 321, 10.1016/j.tws.2014.05.004 Wang, 2013, Determination of realistic worst imperfection for cylindrical shells using surrogate model, Struct. Multidiscip. Optim., 48, 777, 10.1007/s00158-013-0922-9 Wang, 2013, Improved knockdown factors for cylindrical shells using worst multi-perturbation load approach, Shell Struct.: Theory Appl., 263 Hao, 2015, Influence of imperfection distributions for cylindrical stiffened shells with weld lands, Thin-Walled Struct., 93, 177, 10.1016/j.tws.2015.03.017 Hao, 2016, Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach, Compos. Struct., 136, 405, 10.1016/j.compstruct.2015.10.022 Hao, 2015, Hybrid framework for reliability-based design optimization of imperfect stiffened shells, AIAA J., 53, 2878, 10.2514/1.J053816 Wang, 2017, Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity, Aerosp. Sci. Technol., 62, 114, 10.1016/j.ast.2016.12.002 K. Tian, B. Wang, P. Hao, A. Waas, A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells, in: Proceedings of the International Journal of Solids and Structures, 2017, ISSN 0020–7683, https://doi.org/10.1016/j.ijsolstr.2017.10.034. M.W. Hilburger, J.H.J. Starnes, Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts, in: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures and Structural Dynamics and Materials, 2002. J. de Vries, Research on the Yoshimura buckling pattern of small cylindrical thin walled shells, Noordwijk, The Netherlands, in: Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing, 2005. V. Bolotin, Statistical methods in the non-linear theory of elastic shells, Akademii Nauk SSSR, Otdelenie Tekhnicheskykh Nauk 1958;3:33–41 [in Russian; English Translation: NASA TTF-85 1962; 1–16]. Elishakoff, 1987, First-order second-moment analysis of the buckling of shells with random imperfections, AIAA J., 25, 1113, 10.2514/3.9751 J. Kepple, B. Gangadhara Prusty, G. Pearce, D. Kelly, R. Thomson, Improved methods for modeling imperfections for buckling analysis of composite cylindrical shells, ICAS – International Council of Aeronautical Sciences (Ed.), 29th congress of the international council of the aeronautical sciences (2014), pp. 2108–2120. SBKF. NASA shell buckling knockdown factor project; 2017. Available from: 〈https://www.nasa.gov/offices/nesc/home/Feature_ShellBuckling_Test.html〉 [cited 2017 11-05-2017]". M. Hilburger, Developing the next generation shell buckling design factors and technologies, in: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Honolulu; 2012.