Robust kernels for robust location estimation

Neurocomputing - Tập 429 - Trang 174-186 - 2021
Joseph A. Gallego1, Fabio A. González1, Olfa Nasraoui2
1MindLab Research Group, Computing Systems and Industrial Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
2Knowledge Discovery and Web Mining Lab, CECS Department, University of Louisville, Louisville, KY 40292, United States

Tài liệu tham khảo

R. Wilcox (Ed.), Copyright, third edition Edition, Statistical Modeling and Decision Science, Academic Press, Boston, 2012. doi:https://doi.org/10.1016/B978-0-12-386983-8.00016-0. Rousseeuw, 2011, Robust statistics for outlier detection, Wiley Interdisciplinary Reviews, Data Min. Knowl. Disc., 1, 73, 10.1002/widm.2 G. Shevlyakov, N. Vilchevski, Robustness in Data Analysis: criteria and methods, 2001. Hampel, 1985, Robust statistics, Wiley Sieres in Probability and Statistics Li, 1985, Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and monte carlo, J. Am. Stat. Assoc., 80, 759, 10.1080/01621459.1985.10478181 Croux, 2005, High breakdown estimators for principal components: the projection-pursuit approach revisited, J. Multivariate Anal., 95, 206, 10.1016/j.jmva.2004.08.002 Hubert, 2002, A fast method for robust principal components with applications to chemometrics, Chemometrics and Intelligent Laboratory Systems, 60, 101, 10.1016/S0169-7439(01)00188-5 Croux, 2007, Algorithms for projection–pursuit robust principal component analysis, Chemometrics Intell. Lab. Syst., 87, 218, 10.1016/j.chemolab.2007.01.004 Berrani, 2008, Robust detection of outliers for projection-based face recognition methods, Multimedia Tools Appl., 38, 271, 10.1007/s11042-007-0176-x Ben-Tal, 2012, Efficient methods for robust classification under uncertainty in kernel matrices, J. Mach. Learn. Res., 13, 2923 García-Escudero, 2010, A review of robust clustering methods, Adv. Data Anal. Classif., 4, 89, 10.1007/s11634-010-0064-5 Branden, 2005, Robust classification in high dimensions based on the simca method, Chemometrics Intell. Lab. Syst., 79, 10, 10.1016/j.chemolab.2005.03.002 M. Amer, M. Goldstein, S. Abdennadher, Enhancing one-class support vector machines for unsupervised anomaly detection, in: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description - ODD ’13 (2013) 8–15 doi:10.1145/2500853.2500857. A. L. B. Barros, G. A. Barreto, Building a robust extreme learning machine for classification in the presence of outliers, in: International Conference on Hybrid Artificial Intelligence Systems, Springer, 2013, pp. 588–597. Davé, 1997, Robust clustering methods: a unified view, Fuzzy Systems, IEEE Trans., 5, 270, 10.1109/91.580801 Boryczka, 2009, Finding groups in data: Cluster analysis with ants, Appl. Soft Comput., 9, 61, 10.1016/j.asoc.2008.03.002 Chen, 2013, A robust fuzzy kernel clustering algorithm, Appl. Math., 7, 1005 Cuesta-Albertos, 1997, Trimmed k-means: An attempt to robustify quantizers, An. Stat., 25, 553, 10.1214/aos/1031833664 P. A. Forero, V. Kekatos, G. B. Giannakis, Outlier-aware robust clustering, in: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, IEEE, 2011, pp. 2244–2247. Hardin, 2004, Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator, Comput. Stat. Data Anal., 44, 625, 10.1016/S0167-9473(02)00280-3 Kim, 2012, Robust kernel density estimation, The, J. Mach. Learn. Res., 3381 J.-H. Chen, M-estimator based robust kernels for support vector machines, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. 1 (1) (2004) 168-171 Vol. 1. doi:10.1109/ICPR.2004.1334039. Hampel, 2011, Vol. 114 Huber, 2011, Robust statistics, Wiley Sieres in Probability and Statistics, 10.1002/9781118018255 Rieder, 1996 Tyler, 2008, Robust statistics: Theory and methods, J. Am. Stat. Assoc., 103, 888, 10.1198/jasa.2008.s239 Liao, 2012, Robust kernel-based learning for image-related problems, IET Image Process., 6, 795, 10.1049/iet-ipr.2010.0301 S. A. Shah, V. Koltun, Robust continuous clustering, in: Proceedings of the National Academy of Sciences of the United States of America 114 (37) (2017) 9814–9819. arXiv:1803.01449, doi:10.1073/pnas.1700770114. Ruymgaart, 1981, A robust principal component analysis, J. Multivariate Anal., 11, 485, 10.1016/0047-259X(81)90091-9 Liu, 2011, A weighted lq adaptive least squares support vector machine classifiers–robust and sparse approximation, Expert Syst. Appl., 38, 2253, 10.1016/j.eswa.2010.08.013 F. De la Torre, M. J. Black, Robust principal component analysis for computer vision, in: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on 1 (2001) 362–369. Huang, 2011, An iterative algorithm for robust kernel principal component analysis, Neurocomputing, 74, 3921, 10.1016/j.neucom.2011.08.008 M. Svensén, C. M. Bishop, Robust Bayesian mixture modelling, Neurocomputing 64 (1-4 SPEC. ISS.) (2005) 235–252. doi:10.1016/j.neucom.2004.11.018. Gan, 2017, K-means clustering with outlier removal, Pattern Recogn. Lett., 90, 8, 10.1016/j.patrec.2017.03.008 Bezdek, 1984, Fcm: The fuzzy c-means clustering algorithm, Computers Geosci., 10, 191, 10.1016/0098-3004(84)90020-7 Krishnapuram, 1996, The possibilistic c-means algorithm: insights and recommendations, IEEE Trans. Fuzzy Syst., 4, 385, 10.1109/91.531779 E. del Barrio, J. A. Cuesta-Albertos, C. Matrán, A. Mayo-Íscar, Robust clustering tools based on optimal transportation, Statistics and Computing 29 (1) (2019) 139–160. arXiv:1607.01179, doi:10.1007/s11222-018-9800-z. doi: 10.1007/s11222-018-9800-z. Zhou, 2018, Robust clustering by identifying the veins of clusters based on kernel density estimation, Knowl.-Based Syst., 159, 309, 10.1016/j.knosys.2018.06.021 Zhang, 2011, Robust non-negative matrix factorization, Front. Electr. Electron. Eng. China, 6, 192, 10.1007/s11460-011-0128-0 Z. Yang, T. Hao, O. Dikmen, X. Chen, E. Oja, Clustering by nonnegative matrix factorization using graph random walk, in: Advances in Neural Information Processing Systems, 2012, pp. 1079–1087. Debruyne, 2010, Detecting influential observations in kernel pca, Comput. Stat. Data Anal., 54, 3007, 10.1016/j.csda.2009.08.018 C. Lu, T. Zhang, R. Zhang, C. Zhang, Adaptive robust kernel pca algorithm, in: Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03). 2003 IEEE International Conference on, Vol. 6, IEEE, 2003, pp. VI–621. Z. Liang, D. Zhang, P. Shi, Robust kernel discriminant analysis and its application to feature extraction and recognition, Neurocomputing 69 (7–9 SPEC. ISS.) (2006) 928–933. doi:10.1016/j.neucom.2005.09.001. Kang, 2017, Kernel-driven similarity learning, Neurocomputing, 267, 210, 10.1016/j.neucom.2017.06.005 Kang, 2019, Clustering with similarity preserving, Neurocomputing, 365, 211, 10.1016/j.neucom.2019.07.086 F. A. González, D. Bermeo, L. Ramos, O. Nasraoui, On the robustness of kernel-based clustering, in: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Springer, 2012, pp. 122–129. C. S. Ong, X. Mary, S. Canu, A. J. Smola, Learning with non-positive kernels, in: Proceedings of the twenty-first international conference on Machine learning, ACM, 2004, p. 81. Kwok, 2004, The pre-image problem in kernel methods, IEEE Trans. Neural Networks/Publ. IEEE Neural Networks Council, 15, 1517, 10.1109/TNN.2004.837781 Genton, 2001, Classes of kernels for machine learning: a statistics perspective, J. Mach. Learn. Res., 2, 299 R. Askey, Radial characteristics functions., Tech. rep., WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER (1973). Cristianini, 2000 Fasshauer, 2007, Vol. 6 R. Schaback, H. Wendland, Characterization and construction of radial basis functions, in: Multivariate Approximation and Applications, 2010, pp. 1–24. doi:10.1017/cbo9780511569616.002. Wu, 1995, Compactly supported positive definite radial functions, Adv. Comput. Math., 4, 283, 10.1007/BF03177517 C. Berg, J. P. R. Christensen, P. Ressel, Harmonic analysis on semigroups: theory of positive definite and related functions, Vol. 53, 1984. arXiv:arXiv:1011.1669v3. B. Schölkopf, The kernel trick for distances, Advances in Neural Information Processing Systems. K. Bache, M. Lichman, UCI machine learning repository (2013). http://archive.ics.uci.edu/ml. A. M. Martinez, The ar face database, CVC Technical Report 24. F. Samaria, The orl database of faces, AT&T Laboratories Cambridge 1. S. K. N. S. A. Nene, H. Murase., Columbia university image library (coil-20), Technical Report CUCS-005-96 1. M. J. Lyons, Coding facial expressions with gabor wavelets, in: 3rd IEEE International Conference on Automatic Face and Gesture Recognition 1. A. N. Graham Daniel, Face recognition: From theory to applications, Face Recognition: From Theory to Applications 163. O. Nasraoui, C. C. Uribe, C. R. Coronel, F. Gonzalez, Tecno-streams: Tracking evolving clusters in noisy data streams with a scalable immune system learning model, in: Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, IEEE, 2003, pp. 235–242. O. Nasraoui, C. Rojas, Robust clustering for tracking noisy evolving data streams, in: Proceedings of the 2006 SIAM International Conference on Data Mining, SIAM, 2006, pp. 619–623. O. Nasraoui, R. Krishnapuram, A robust estimator based on density and scale optimization, and its application to clustering, in: IEEE International Conference on Fuzzy Systems, 1996, pp. 1031–1035. Ding, 2010, Convex and semi-nonnegative matrix factorizations, IEEE Trans. Pattern Anal. Mach. Intell., 32, 45, 10.1109/TPAMI.2008.277 I. S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: spectral clustering and normalized cuts (2004) 551–556. Hartigan, 1979, Algorithm as 136: A k-means clustering algorithm, J. R. Stat. Soc. Ser. C (Appl. Stat.), 28, 100 Paatero, 1994, Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111, 10.1002/env.3170050203 Ding, 2008, On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing, Comput. Stat. Data Anal., 52, 3913, 10.1016/j.csda.2008.01.011 Yang, 2008, Alpha-cut implemented fuzzy clustering algorithms and switching regressions, IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 38, 588, 10.1109/TSMCB.2008.915537 C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix t-factorizations for clustering, in: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2006, pp. 126–135. Shi, 2000, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22, 888, 10.1109/34.868688 Arora, 2011, Clustering by left-stochastic matrix factorization, in, 761 G. Aggarwal, S. Garg, N. Gupta, Combining clustering solutions with varying number of clusters, Int. J. Computer Sci. Issues (IJCSI) 11 (2) (2014) 240. Wen, 2009, Robust least squares support vector machine based on recursive outlier elimination, Soft. Comput., 14, 1241, 10.1007/s00500-009-0535-9