Robust kernel principal component analysis and classification
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alzate C, Suykens JAK (2008) Kernel component analysis using an epsilon-insensitive robust loss function. IEEE Trans Neural Netw 19: 1583–1598
Croux C, Ruiz-Gazen A (1996) A fast algorithm for robust principal components based on projection pursuit. In: COMPSTAT: Proceedings in computational statistics, pp 211–216
Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection- pursuit approach revisited. J Multivar Anal 95: 206–226
Croux C, Filzmoser P, Oliveira MR (2007) Algorithms for projection-pursuit robust principal component analysis. Chemom Intell Lab Syst 87: 218–225
Cui H, He X, Ng KW (2003) Asymptotic distributions of principal components based on robust dispersions. Biometrika 90: 953–966
Debruyne M (2009) An outlier map for support vector machine classification. Ann Appl Stat 3(4): 1566–1580
Debruyne M, Hubert M (2009) The influence function of the Stahel-Donoho covariance estimator of smallest outlyingness. Stat Probab Lett 79: 275–282
Debruyne M, Hubert M, Van Horebeek J (2009a) Detecting influential observations in Kernel PCA. Comput Stat Data Anal (in press). doi: 10.1016/j.csda.2009.08.018
Debruyne M, Serneels S, Verdonck T (2009b) Robustified least squares support vector classification. J Chemometrics 23(9): 479–486
Donoho DL, Gasko M (1992) Breakdown properties of location estimates based on half-space depth and projected outlyingness. Ann Stat 20: 1803–1827
Friedman JH, Tukey JW (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput C-23(9): 881–890
Hubert M, Engelen S (2004) Robust PCA and classification in biosciences. Bioinformatics 20: 1728–1736
Hubert M, Van Driessen K (2004) Fast and robust discriminant analysis. Comput Stat Data Anal 45: 301–320
Hubert M, Rousseeuw PJ, Verboven S (2002) A fast robust method for principal components with applications to chemometrics. Chemom Intell Lab Syst 60: 101–111
Hubert M, Rousseeuw PJ, Vanden Branden K (2005) ROBPCA: a new approach to robust principal components analysis. Technometrics 47: 64–79
Li G, Chen Z (1985) Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J Am Stat Assoc 80: 759–766
Liu Z, Chen D, Bensmail H (2005) Gene expression data classification with kernel principal component analysis. J Biomed Biotechnol 2: 155–169
Locantore N, Marron JS, Simpson DG, Tripoli N, Zhang JT, Cohen KL (1999) Robust principal component analysis for functional data. Test 8: 1–73
Lu C-D, Zhang T-Y, Du X-Z, Li C-P (2004) A robust kernel PCA algorithm. Proc Int Conf Mach Learn Cybernet 5: 3084–3087
Maronna RA (2005) Principal components and orthogonal regression based on robust scales. Technometrics 47: 264–273
Maronna RA, Zamar R (2002) Robust estimates of location and dispersion for high-dimensional data sets. Technometrics 44: 307–317
Mika S, Rätsch G, Weston J, Schölkopf B, Müller KR (1999) Fisher discriminant analysis with kernels. In: IEEE international workshop on neural networks for signal processing IX, pp 41–48
Nguyen MH, De la Torre F (2009) Robust kernel principal component analysis. Adv Neural Inf Process Syst 21: 1185–1192
Ohst C (1988) Beste approximierende Kreise und ihre Eigenschaften (Best approximating spheres and their properties). Diplomarbeit in Mathematik, Institut für Statistik und Wirtschaftsmathematik, RWTH Aachen University
Pollack JD, Li Q, Pearl DK (2005) Taxonomic utility of a phylogenetic analysis of phosphoglycerate kinase proteins of Archaea, Bacteria, and Eukaryota: insights by Bayesian analyses. Mol Phylogenet Evol 35: 420–430
Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88: 1273–1283
Rousseeuw PJ, Van Driessen K (1999) Fast algorithm for the minimum covariance determinant estimator. Technometrics 41: 212–223
Saigo H, Vert J, Ueda N, Akutsul T (2004) Protein homology detection using string alignment kernels. Bioinformatics 20: 1682–1689
Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge
Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10: 1299–1319
Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press, Cambridge
Stahel WA (1981) Robuste Schätzungen: Infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen. PhD thesis, ETH Zürich
Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore
Takahashi T, Kurita T (2002) Robust de-noising by kernel PCA. In: Proceedings of the international conference on artificial neural networks. Lecture notes in computer science, vol 2415, pp 739–744
Verboven S, Hubert M (2005) LIBRA: a MATLAB library for robust analysis. Chemom Intell Lab Syst 75: 127–136
Yang J, Jin Z, Yang JY, Zhang D, Frangi AF (2004) Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognit 37: 2097–2100