Robust kernel principal component analysis and classification

Advances in Data Analysis and Classification - Tập 4 Số 2-3 - Trang 151-167 - 2010
Michiel Debruyne1, Tim Verdonck1
1Antwerp, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alzate C, Suykens JAK (2008) Kernel component analysis using an epsilon-insensitive robust loss function. IEEE Trans Neural Netw 19: 1583–1598

Croux C, Ruiz-Gazen A (1996) A fast algorithm for robust principal components based on projection pursuit. In: COMPSTAT: Proceedings in computational statistics, pp 211–216

Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection- pursuit approach revisited. J Multivar Anal 95: 206–226

Croux C, Filzmoser P, Oliveira MR (2007) Algorithms for projection-pursuit robust principal component analysis. Chemom Intell Lab Syst 87: 218–225

Cui H, He X, Ng KW (2003) Asymptotic distributions of principal components based on robust dispersions. Biometrika 90: 953–966

Debruyne M (2009) An outlier map for support vector machine classification. Ann Appl Stat 3(4): 1566–1580

Debruyne M, Hubert M (2009) The influence function of the Stahel-Donoho covariance estimator of smallest outlyingness. Stat Probab Lett 79: 275–282

Debruyne M, Hubert M, Van Horebeek J (2009a) Detecting influential observations in Kernel PCA. Comput Stat Data Anal (in press). doi: 10.1016/j.csda.2009.08.018

Debruyne M, Serneels S, Verdonck T (2009b) Robustified least squares support vector classification. J Chemometrics 23(9): 479–486

Donoho DL, Gasko M (1992) Breakdown properties of location estimates based on half-space depth and projected outlyingness. Ann Stat 20: 1803–1827

Friedman JH, Tukey JW (1974) A projection pursuit algorithm for exploratory data analysis. IEEE Trans Comput C-23(9): 881–890

Huber PJ (1985) Projection pursuit. Ann Stat 13: 435–475

Hubert M, Engelen S (2004) Robust PCA and classification in biosciences. Bioinformatics 20: 1728–1736

Hubert M, Van Driessen K (2004) Fast and robust discriminant analysis. Comput Stat Data Anal 45: 301–320

Hubert M, Rousseeuw PJ, Verboven S (2002) A fast robust method for principal components with applications to chemometrics. Chemom Intell Lab Syst 60: 101–111

Hubert M, Rousseeuw PJ, Vanden Branden K (2005) ROBPCA: a new approach to robust principal components analysis. Technometrics 47: 64–79

Li G, Chen Z (1985) Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J Am Stat Assoc 80: 759–766

Liu Z, Chen D, Bensmail H (2005) Gene expression data classification with kernel principal component analysis. J Biomed Biotechnol 2: 155–169

Locantore N, Marron JS, Simpson DG, Tripoli N, Zhang JT, Cohen KL (1999) Robust principal component analysis for functional data. Test 8: 1–73

Lu C-D, Zhang T-Y, Du X-Z, Li C-P (2004) A robust kernel PCA algorithm. Proc Int Conf Mach Learn Cybernet 5: 3084–3087

Marden JI (1999) Some robust estimates of principal components. Stat Probab Lett 43: 349–359

Maronna RA (2005) Principal components and orthogonal regression based on robust scales. Technometrics 47: 264–273

Maronna RA, Zamar R (2002) Robust estimates of location and dispersion for high-dimensional data sets. Technometrics 44: 307–317

Mika S, Rätsch G, Weston J, Schölkopf B, Müller KR (1999) Fisher discriminant analysis with kernels. In: IEEE international workshop on neural networks for signal processing IX, pp 41–48

Nguyen MH, De la Torre F (2009) Robust kernel principal component analysis. Adv Neural Inf Process Syst 21: 1185–1192

Ohst C (1988) Beste approximierende Kreise und ihre Eigenschaften (Best approximating spheres and their properties). Diplomarbeit in Mathematik, Institut für Statistik und Wirtschaftsmathematik, RWTH Aachen University

Pollack JD, Li Q, Pearl DK (2005) Taxonomic utility of a phylogenetic analysis of phosphoglycerate kinase proteins of Archaea, Bacteria, and Eukaryota: insights by Bayesian analyses. Mol Phylogenet Evol 35: 420–430

Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79: 871–880

Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88: 1273–1283

Rousseeuw PJ, Van Driessen K (1999) Fast algorithm for the minimum covariance determinant estimator. Technometrics 41: 212–223

Saigo H, Vert J, Ueda N, Akutsul T (2004) Protein homology detection using string alignment kernels. Bioinformatics 20: 1682–1689

Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge

Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10: 1299–1319

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press, Cambridge

Stahel WA (1981) Robuste Schätzungen: Infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen. PhD thesis, ETH Zürich

Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

Takahashi T, Kurita T (2002) Robust de-noising by kernel PCA. In: Proceedings of the international conference on artificial neural networks. Lecture notes in computer science, vol 2415, pp 739–744

Verboven S, Hubert M (2005) LIBRA: a MATLAB library for robust analysis. Chemom Intell Lab Syst 75: 127–136

Yang J, Jin Z, Yang JY, Zhang D, Frangi AF (2004) Essence of kernel Fisher discriminant: KPCA plus LDA. Pattern Recognit 37: 2097–2100

Yang J, Frangi AF, Yang JY, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27: 230–244