Robust hierarchic control for a population dynamics model with missing birth rate

Mathematics of Control, Signals and Systems - Tập 32 - Trang 209-239 - 2020
Gisèle Mophou1,2,3, Moumini Kéré4, Lionel Landry Djomegne Njoukoué5
1African Institute for Mathematical Sciences (AIMS), Limbe, Cameroon
2Laboratoire LAMIA, Université des Antilles, Pointe-à-Pitre, Guadeloupe
3(FWI)- Laboratoire MAINEGE, Université Ouaga 3S, Ouagadougou 06, Burkina Faso
4Departement de Mathematics, Institut des Sciences (IDS), Ouaga 01, Burkina Faso
5University of Dschang, Dschang, Cameroon

Tóm tắt

In this paper, we study the hierarchic control problem for a linear system of a population dynamics model with an unknown birth rate. Using the notion of low-regret control and an adapted observability inequality of Carleman type, we show that there exist two controls such that, the first control called follower solves an optimal control problem which consists in bringing the state of the linear system to the desired state, and the second one named leader is supposed to lead the population to extinction at final time.

Tài liệu tham khảo

Ainseba B, Langlais M (1996) Sur un problème de contrôle d’une population structurée en âge et en espace(French) [On a population control problem dynamics with age dependence and spatial structure]. C R Acad Sci Paris Sér I Math 323(3):269–274 Langlais M (1985) A nonlinear problem in age-dependent population diffusion. SIAM J Math Anal 16(3):510–529 Garroni MG, Langlais M (1982) Age-dependent population diffusion with external constraint. J Math Biol 14(1):77–94 von Stackelberg H (1934) Markform und gleichgewicht. Springer, Berlin Lions JL (1994) Some remarks on Stackelberg’s optimization. Math Models Methods Appl Sci 4(4):477–487 Nakoulima O (2007) Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels. ESAIM Control Optim Calc Var 13(4):623–637 Mercan M (2013) Optimal control for distributed linear systems subjected to null-controllability. Appl Anal 92(9):1928–1943 Mercan M (2013) Optimal control for distributed linear systems subjected to null controllability with constraints on the state. In: Bourama T (ed) Advances in interdisciplinary mathematical research, vol 37. Springer proceedings in mathematics and statistics. Springer, New York, pp 213–232 Mercan M, Nakoulima O (2015) Control of Stackelberg for a two-stroke problem. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms 22(6):441–463 Kéré M, Mercan M, Mophou G (2017) Control of Stackelberg for coupled parabolic equations. J Dyn Control Syst 23(4):709–733 Traoré O, Ouédraogo A (2003) Sur un problème de dynamique des populations. (French) [A population dynamics problem]. IMHOTEP J Afr Math Pures Appl 4(1):15–23 Kavian O, Traoré O (2011) Approximate controllability by birth control for a nonlinear population dynamics model. ESAIM Control Optim Calc Var 17(4):1198–1213 Jacob B, Omrane A (2010) Optimal control for age-structured population dynamics of incomplete data. J Math Anal Appl 370(1):42–48 Lions JL (1992) Contrôle à moindres regrets des systèmes distribués. (French) [Least-regret controls for distributed systems]. C R Acad Sci Paris Sér I Math 315(12):1253–1257 Ainseba B (2002) Exact and approximate controllability of the age and space population dynamics structured model. J Math Anal Appl 275(2):562–574 Ainseba B, Anita S (2001) Local exact controllability of the age-dependent population dynamics with diffusion. Abstr Appl Anal 6(6):357–368 Ainseba B, Iannelli M (2003) Exact controllability of a nonlinear population-dynamics problem. Differ. Integr. Equ. 16(11):1369–1384 Sawadogo S, Mophou G (2012) Null controllability with constraints on the state for the age-dependent linear population dynamics problem. Adv Differ Equ Control Process 10(2):113–130 Ainseba B, Langlais M (2000) On a population dynamics control problem with age dependence and spatial structure. J Math Anal Appl 248(2):455–474 Echarroudi Y, Maniar L (2014) Null controllability of a model in population dynamics. Electron J Differ Equ 240:20 Maity D, Tucsnak M, Zuazua E (2018) Sharp time null controllability of a population dynamics model with age structuring and diffusion. Hal-01764865v1 Hegoburu N, Anita S (2019) Null controllability via comparison results for nonlinear age-structured population dynamics. Math Control Signals Syst 31:2. https://doi.org/10.1007/s00498-019-0232-x Traoré O (2007) Approximate controllability and application to data assimilation problem for a linear population dynamics model. IAENG Int J Appl Math 37(1):12 Traoré O (2006) Null controllability of a nonlinear population dynamics problem. Int J Math Math Sci Article ID 49279, p 20 Mercan M, Mophou GM (2014) Null controllability with state constraints of a linear backward population dynamics problem. Int J Evol Equ 9(1):99120 Nakoulima O, Sawadogo S (2007) Internal pollution and discriminating sentinel in population dynamics problem. Int J Evol Equ 2(1):29–46 Fursikov A, Imanuvilov O (1996) Controllability of evolution equations. Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul Traoré O (2010) Null controllability and application to data assimilation problem for a linear model of population dynamics. Ann Math Blaise Pascal 17(2):375–399 de Teresa L (2000) Insensitizing controls for a semilinear heat equation. Commun Partial Differ Equ 25(1–2):39–72